Matches in SemOpenAlex for { <https://semopenalex.org/work/W3013462871> ?p ?o ?g. }
- W3013462871 endingPage "6801" @default.
- W3013462871 startingPage "6787" @default.
- W3013462871 abstract "Mobile wireless sensor networks (MWSNs) are resource constrained, and have limited energy and transmission range. Distributed collaborative beamforming (DCB) in MWSNs based on a virtual node antenna array (VNAA) can increase the transmission distance and enhance the energy efficiency of a single sensor node. To achieve a lower maximum sidelobe level (SLL), sensor nodes can move to optimal locations with optimal excitation current weights for DCB. However, this leads to an extra motion energy consumption. In this article, we construct a multiobjective optimization framework (MOF) to jointly optimize the maximum SLL, transmission power, and motion energy consumption of the DCB nodes in MWSNs. Moreover, an improved nondominated sorting genetic algorithm-II (INSGA-II) and a distributed parallel INSGA-II (DPINSGA-II) are proposed for solving the formulated MOF. In addition, a simple but practical DCB scheduling mechanism is proposed. The simulation results show that the maximum SLL, transmission power, and motion energy consumption of the VNAA can be effectively optimized by the proposed algorithms." @default.
- W3013462871 created "2020-04-03" @default.
- W3013462871 creator A5020068277 @default.
- W3013462871 creator A5033902099 @default.
- W3013462871 creator A5035919267 @default.
- W3013462871 creator A5042973046 @default.
- W3013462871 creator A5052019754 @default.
- W3013462871 creator A5085514719 @default.
- W3013462871 creator A5085768105 @default.
- W3013462871 date "2020-08-01" @default.
- W3013462871 modified "2023-10-17" @default.
- W3013462871 title "Improving Performance of Distributed Collaborative Beamforming in Mobile Wireless Sensor Networks: A Multiobjective Optimization Method" @default.
- W3013462871 cites W1595159159 @default.
- W3013462871 cites W1679940141 @default.
- W3013462871 cites W1693437504 @default.
- W3013462871 cites W1982497740 @default.
- W3013462871 cites W1997183223 @default.
- W3013462871 cites W2005216694 @default.
- W3013462871 cites W2016223726 @default.
- W3013462871 cites W2051821221 @default.
- W3013462871 cites W2066977081 @default.
- W3013462871 cites W2097010832 @default.
- W3013462871 cites W2126105956 @default.
- W3013462871 cites W2133304166 @default.
- W3013462871 cites W2134493171 @default.
- W3013462871 cites W2139043285 @default.
- W3013462871 cites W2140147750 @default.
- W3013462871 cites W2140882991 @default.
- W3013462871 cites W2159427933 @default.
- W3013462871 cites W2168673745 @default.
- W3013462871 cites W2184464354 @default.
- W3013462871 cites W2214742514 @default.
- W3013462871 cites W2321512496 @default.
- W3013462871 cites W2324552658 @default.
- W3013462871 cites W2328425953 @default.
- W3013462871 cites W2395554370 @default.
- W3013462871 cites W2427926432 @default.
- W3013462871 cites W2506176254 @default.
- W3013462871 cites W2514256458 @default.
- W3013462871 cites W2517636134 @default.
- W3013462871 cites W2573713209 @default.
- W3013462871 cites W2586115897 @default.
- W3013462871 cites W2610758484 @default.
- W3013462871 cites W2731474427 @default.
- W3013462871 cites W2762702165 @default.
- W3013462871 cites W2771213425 @default.
- W3013462871 cites W2783513908 @default.
- W3013462871 cites W2783895855 @default.
- W3013462871 cites W2890636089 @default.
- W3013462871 cites W2901549799 @default.
- W3013462871 cites W2904166664 @default.
- W3013462871 cites W2907531223 @default.
- W3013462871 cites W2911916515 @default.
- W3013462871 cites W2916272095 @default.
- W3013462871 cites W2945797761 @default.
- W3013462871 cites W2964088407 @default.
- W3013462871 cites W2964135632 @default.
- W3013462871 cites W2973829044 @default.
- W3013462871 cites W2981168166 @default.
- W3013462871 cites W2991627768 @default.
- W3013462871 cites W2995928171 @default.
- W3013462871 cites W4230662629 @default.
- W3013462871 doi "https://doi.org/10.1109/jiot.2020.2983519" @default.
- W3013462871 hasPublicationYear "2020" @default.
- W3013462871 type Work @default.
- W3013462871 sameAs 3013462871 @default.
- W3013462871 citedByCount "17" @default.
- W3013462871 countsByYear W30134628712021 @default.
- W3013462871 countsByYear W30134628712022 @default.
- W3013462871 countsByYear W30134628712023 @default.
- W3013462871 crossrefType "journal-article" @default.
- W3013462871 hasAuthorship W3013462871A5020068277 @default.
- W3013462871 hasAuthorship W3013462871A5033902099 @default.
- W3013462871 hasAuthorship W3013462871A5035919267 @default.
- W3013462871 hasAuthorship W3013462871A5042973046 @default.
- W3013462871 hasAuthorship W3013462871A5052019754 @default.
- W3013462871 hasAuthorship W3013462871A5085514719 @default.
- W3013462871 hasAuthorship W3013462871A5085768105 @default.
- W3013462871 hasConcept C108037233 @default.
- W3013462871 hasConcept C111185680 @default.
- W3013462871 hasConcept C111696304 @default.
- W3013462871 hasConcept C11413529 @default.
- W3013462871 hasConcept C119599485 @default.
- W3013462871 hasConcept C120314980 @default.
- W3013462871 hasConcept C126255220 @default.
- W3013462871 hasConcept C127413603 @default.
- W3013462871 hasConcept C206729178 @default.
- W3013462871 hasConcept C24590314 @default.
- W3013462871 hasConcept C2742236 @default.
- W3013462871 hasConcept C2780165032 @default.
- W3013462871 hasConcept C31258907 @default.
- W3013462871 hasConcept C33923547 @default.
- W3013462871 hasConcept C41008148 @default.
- W3013462871 hasConcept C41971633 @default.
- W3013462871 hasConcept C54197355 @default.
- W3013462871 hasConcept C555944384 @default.
- W3013462871 hasConcept C62611344 @default.
- W3013462871 hasConcept C66938386 @default.