Matches in SemOpenAlex for { <https://semopenalex.org/work/W3013476570> ?p ?o ?g. }
- W3013476570 endingPage "117444" @default.
- W3013476570 startingPage "117444" @default.
- W3013476570 abstract "Coal is not only the most important primary energy in China,but also the most stable and safe energy. Accurate prediction of coal consumption can promote the adjustment of the coal industrial structure, accelerate the coal industry to achieve high-quality development,it also provides an effective decision-making basis for the formulation of medium-and long-term coal industry development strategy. Therefore, the prediction of coal consumption has become extremely essential and urgent. In this paper,the coal consumption of Gansu in the past 20 years from 1999 to 2018 is taken as the basic data. First,the GM (1,1) forecasting model of coal consumption in Gansu was established. Based on the forecast of the coal consumption of Gansu in the past two decades,the accuracy of the model was tested. The results show that the predicted average relative error was 0.08881,and the GM(1,1) model was barely qualified with better forecasting accuracy, which is suitable for medium and long-term coal consumption forecast. Subsequently,the Markov chain prediction method was adopted to correct the GM (1,1) model,and the accuracy of the modified model was tested. The results indicate that after correcting the GM (1,1) model with Markov chain,the predicted average relative error was 0.04454,far less than before the correction,and the predicted accuracy was significantly enhanced. Finally,the Grey-Markov chain model was employed to predict the coal consumption in Gansu from 2020 to 2035,and the forecasting process was also analyzed. In addition, choose to use different scenarios to predict coal consumption, then the prediction results obtained by the two methods are compared." @default.
- W3013476570 created "2020-04-03" @default.
- W3013476570 creator A5063136544 @default.
- W3013476570 creator A5078316246 @default.
- W3013476570 creator A5082373596 @default.
- W3013476570 creator A5082798364 @default.
- W3013476570 creator A5091229139 @default.
- W3013476570 date "2020-05-01" @default.
- W3013476570 modified "2023-10-16" @default.
- W3013476570 title "Forecast of coal consumption in Gansu Province based on Grey-Markov chain model" @default.
- W3013476570 cites W1093375830 @default.
- W3013476570 cites W1964768963 @default.
- W3013476570 cites W1982169178 @default.
- W3013476570 cites W1984763673 @default.
- W3013476570 cites W1986391437 @default.
- W3013476570 cites W1998666335 @default.
- W3013476570 cites W2003037801 @default.
- W3013476570 cites W2013377700 @default.
- W3013476570 cites W2031118743 @default.
- W3013476570 cites W2036953951 @default.
- W3013476570 cites W2056111220 @default.
- W3013476570 cites W2079473044 @default.
- W3013476570 cites W2082156582 @default.
- W3013476570 cites W2088482102 @default.
- W3013476570 cites W2176581478 @default.
- W3013476570 cites W2177399645 @default.
- W3013476570 cites W2432465520 @default.
- W3013476570 cites W2494809744 @default.
- W3013476570 cites W2505517328 @default.
- W3013476570 cites W2518692957 @default.
- W3013476570 cites W2555832335 @default.
- W3013476570 cites W2606233713 @default.
- W3013476570 cites W2765450834 @default.
- W3013476570 cites W2787337287 @default.
- W3013476570 cites W2792302906 @default.
- W3013476570 cites W2793266273 @default.
- W3013476570 cites W2801398103 @default.
- W3013476570 cites W2804202111 @default.
- W3013476570 cites W2808315302 @default.
- W3013476570 cites W2885046688 @default.
- W3013476570 cites W2892263695 @default.
- W3013476570 cites W2898641542 @default.
- W3013476570 cites W2926966800 @default.
- W3013476570 cites W2937737135 @default.
- W3013476570 cites W2938487090 @default.
- W3013476570 cites W2941382837 @default.
- W3013476570 cites W2982411640 @default.
- W3013476570 cites W3111139653 @default.
- W3013476570 doi "https://doi.org/10.1016/j.energy.2020.117444" @default.
- W3013476570 hasPublicationYear "2020" @default.
- W3013476570 type Work @default.
- W3013476570 sameAs 3013476570 @default.
- W3013476570 citedByCount "36" @default.
- W3013476570 countsByYear W30134765702020 @default.
- W3013476570 countsByYear W30134765702021 @default.
- W3013476570 countsByYear W30134765702022 @default.
- W3013476570 countsByYear W30134765702023 @default.
- W3013476570 crossrefType "journal-article" @default.
- W3013476570 hasAuthorship W3013476570A5063136544 @default.
- W3013476570 hasAuthorship W3013476570A5078316246 @default.
- W3013476570 hasAuthorship W3013476570A5082373596 @default.
- W3013476570 hasAuthorship W3013476570A5082798364 @default.
- W3013476570 hasAuthorship W3013476570A5091229139 @default.
- W3013476570 hasConcept C105795698 @default.
- W3013476570 hasConcept C119599485 @default.
- W3013476570 hasConcept C119857082 @default.
- W3013476570 hasConcept C122383733 @default.
- W3013476570 hasConcept C127413603 @default.
- W3013476570 hasConcept C144024400 @default.
- W3013476570 hasConcept C149782125 @default.
- W3013476570 hasConcept C159886148 @default.
- W3013476570 hasConcept C162324750 @default.
- W3013476570 hasConcept C163836022 @default.
- W3013476570 hasConcept C2780165032 @default.
- W3013476570 hasConcept C30772137 @default.
- W3013476570 hasConcept C33923547 @default.
- W3013476570 hasConcept C36289849 @default.
- W3013476570 hasConcept C39432304 @default.
- W3013476570 hasConcept C41008148 @default.
- W3013476570 hasConcept C518851703 @default.
- W3013476570 hasConcept C548081761 @default.
- W3013476570 hasConcept C98763669 @default.
- W3013476570 hasConceptScore W3013476570C105795698 @default.
- W3013476570 hasConceptScore W3013476570C119599485 @default.
- W3013476570 hasConceptScore W3013476570C119857082 @default.
- W3013476570 hasConceptScore W3013476570C122383733 @default.
- W3013476570 hasConceptScore W3013476570C127413603 @default.
- W3013476570 hasConceptScore W3013476570C144024400 @default.
- W3013476570 hasConceptScore W3013476570C149782125 @default.
- W3013476570 hasConceptScore W3013476570C159886148 @default.
- W3013476570 hasConceptScore W3013476570C162324750 @default.
- W3013476570 hasConceptScore W3013476570C163836022 @default.
- W3013476570 hasConceptScore W3013476570C2780165032 @default.
- W3013476570 hasConceptScore W3013476570C30772137 @default.
- W3013476570 hasConceptScore W3013476570C33923547 @default.
- W3013476570 hasConceptScore W3013476570C36289849 @default.
- W3013476570 hasConceptScore W3013476570C39432304 @default.
- W3013476570 hasConceptScore W3013476570C41008148 @default.