Matches in SemOpenAlex for { <https://semopenalex.org/work/W3013534122> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3013534122 endingPage "31" @default.
- W3013534122 startingPage "23" @default.
- W3013534122 abstract "Active learning is a popular methodology in text classification - known in the legal domain as or Technology Assisted Review or TAR - due to its potential to minimize the required review effort to build effective classifiers. In this study, we use extensive experimentation to examine the impact of popular seed set selection strategies in active learning, within a predictive coding exercise, and evaluate different active learning strategies against well-researched continuous active learning strategies for the purpose of determining efficient training methods for classifying large populations quickly and precisely. We study how random sampling, keyword models and clustering based seed set selection strategies combined together with top-ranked, uncertain, random, recall inspired, and hybrid active learning document selection strategies affect the performance of active learning for predictive coding. We use the percentage of documents requiring review to reach 75% recall as the benchmark metric to evaluate and compare our approaches. In most cases we find that seed set selection methods have a minor impact, though they do show significant impact in lower richness data sets or when choosing a top-ranked active learning selection strategy. Our results also show that active learning selection strategies implementing uncertainty, random, or 75% recall selection strategies has the potential to reach the optimum active learning round much earlier than the popular continuous active learning approach (top-ranked selection). The results of our research shed light on the impact of active learning seed set selection strategies and also the effectiveness of the selection strategies for the following learning rounds. Legal practitioners can use the results of this study to enhance the efficiency, precision, and simplicity of their predictive coding process." @default.
- W3013534122 created "2020-04-03" @default.
- W3013534122 creator A5031747844 @default.
- W3013534122 creator A5045773186 @default.
- W3013534122 creator A5049186333 @default.
- W3013534122 creator A5053708169 @default.
- W3013534122 creator A5078078282 @default.
- W3013534122 creator A5078200110 @default.
- W3013534122 date "2019-01-01" @default.
- W3013534122 modified "2023-09-23" @default.
- W3013534122 title "Evaluation of Seed Set Selection Approaches and Active Learning Strategies in Predictive Coding." @default.
- W3013534122 cites W2029075138 @default.
- W3013534122 cites W2085989833 @default.
- W3013534122 cites W2413512986 @default.
- W3013534122 cites W2585689263 @default.
- W3013534122 cites W2604229097 @default.
- W3013534122 cites W2784310254 @default.
- W3013534122 hasPublicationYear "2019" @default.
- W3013534122 type Work @default.
- W3013534122 sameAs 3013534122 @default.
- W3013534122 citedByCount "0" @default.
- W3013534122 crossrefType "journal-article" @default.
- W3013534122 hasAuthorship W3013534122A5031747844 @default.
- W3013534122 hasAuthorship W3013534122A5045773186 @default.
- W3013534122 hasAuthorship W3013534122A5049186333 @default.
- W3013534122 hasAuthorship W3013534122A5053708169 @default.
- W3013534122 hasAuthorship W3013534122A5078078282 @default.
- W3013534122 hasAuthorship W3013534122A5078200110 @default.
- W3013534122 hasConcept C119857082 @default.
- W3013534122 hasConcept C154945302 @default.
- W3013534122 hasConcept C169258074 @default.
- W3013534122 hasConcept C177264268 @default.
- W3013534122 hasConcept C199360897 @default.
- W3013534122 hasConcept C41008148 @default.
- W3013534122 hasConcept C77967617 @default.
- W3013534122 hasConcept C81917197 @default.
- W3013534122 hasConceptScore W3013534122C119857082 @default.
- W3013534122 hasConceptScore W3013534122C154945302 @default.
- W3013534122 hasConceptScore W3013534122C169258074 @default.
- W3013534122 hasConceptScore W3013534122C177264268 @default.
- W3013534122 hasConceptScore W3013534122C199360897 @default.
- W3013534122 hasConceptScore W3013534122C41008148 @default.
- W3013534122 hasConceptScore W3013534122C77967617 @default.
- W3013534122 hasConceptScore W3013534122C81917197 @default.
- W3013534122 hasLocation W30135341221 @default.
- W3013534122 hasOpenAccess W3013534122 @default.
- W3013534122 hasPrimaryLocation W30135341221 @default.
- W3013534122 hasRelatedWork W1022151902 @default.
- W3013534122 hasRelatedWork W2086184281 @default.
- W3013534122 hasRelatedWork W2148835178 @default.
- W3013534122 hasRelatedWork W2179512327 @default.
- W3013534122 hasRelatedWork W2195855237 @default.
- W3013534122 hasRelatedWork W2335739622 @default.
- W3013534122 hasRelatedWork W2755846764 @default.
- W3013534122 hasRelatedWork W2783341055 @default.
- W3013534122 hasRelatedWork W2806138827 @default.
- W3013534122 hasRelatedWork W2901370612 @default.
- W3013534122 hasRelatedWork W2907077903 @default.
- W3013534122 hasRelatedWork W2910177331 @default.
- W3013534122 hasRelatedWork W2950750037 @default.
- W3013534122 hasRelatedWork W2989751113 @default.
- W3013534122 hasRelatedWork W3003492572 @default.
- W3013534122 hasRelatedWork W3020745670 @default.
- W3013534122 hasRelatedWork W3080433489 @default.
- W3013534122 hasRelatedWork W3107115304 @default.
- W3013534122 hasRelatedWork W3127985239 @default.
- W3013534122 hasRelatedWork W3180259548 @default.
- W3013534122 isParatext "false" @default.
- W3013534122 isRetracted "false" @default.
- W3013534122 magId "3013534122" @default.
- W3013534122 workType "article" @default.