Matches in SemOpenAlex for { <https://semopenalex.org/work/W3013563250> ?p ?o ?g. }
- W3013563250 endingPage "221" @default.
- W3013563250 startingPage "203" @default.
- W3013563250 abstract "The development of fully functional small diameter vascular grafts requires both a properly defined vessel conduit and tissue-specific cellular populations. Mesenchymal stromal cells (MSCs) derived from the Wharton's Jelly (WJ) tissue can be used as a source for obtaining vascular smooth muscle cells (VSMCs), while the human umbilical arteries (hUAs) can serve as a scaffold for blood vessel engineering.To develop VSMCs from WJ-MSCs utilizing umbilical cord blood platelet lysate.WJ-MSCs were isolated and expanded until passage (P) 4. WJ-MSCs were properly defined according to the criteria of the International Society for Cell and Gene Therapy. Then, these cells were differentiated into VSMCs with the use of platelet lysate from umbilical cord blood in combination with ascorbic acid, followed by evaluation at the gene and protein levels. Specifically, gene expression profile analysis of VSMCs for ACTA2, MYH11, TGLN, MYOCD, SOX9, NANOG homeobox, OCT4 and GAPDH, was performed. In addition, immunofluorescence against ACTA2 and MYH11 in combination with DAPI staining was also performed in VSMCs. HUAs were decellularized and served as scaffolds for possible repopulation by VSMCs. Histological and biochemical analyses were performed in repopulated hUAs.WJ-MSCs exhibited fibroblastic morphology, successfully differentiating into osteocytes, adipocytes and chondrocytes, and were characterized by positive expression (> 90%) of CD90, CD73 and CD105. In addition, WJ-MSCs were successfully differentiated into VSMCs with the proposed differentiation protocol. VSMCs successfully expressed ACTA2, MYH11, MYOCD, TGLN and SOX9. Immunofluorescence results indicated the expression of ACTA2 and MYH11 in VSMCs. In order to determine the functionality of VSMCs, hUAs were isolated and decellularized. Based on histological analysis, decellularized hUAs were free of any cellular or nuclear materials, while their extracellular matrix retained intact. Then, repopulation of decellularized hUAs with VSMCs was performed for 3 wk. Decellularized hUAs were repopulated efficiently by the VSMCs. Biochemical analysis revealed the increase of total hydroyproline and sGAG contents in repopulated hUAs with VSMCs. Specifically, total hydroxyproline and sGAG content after the 1st, 2nd and 3rd wk was 71 ± 10, 74 ± 9 and 86 ± 8 μg hydroxyproline/mg of dry tissue weight and 2 ± 1, 3 ± 1 and 3 ± 1 μg sGAG/mg of dry tissue weight, respectively. Statistically significant differences were observed between all study groups (P < 0.05).VSMCs were successfully obtained from WJ-MSCs with the proposed differentiation protocol. Furthermore, hUAs were efficiently repopulated by VSMCs. Differentiated VSMCs from WJ-MSCs could provide an alternative source of cells for vascular tissue engineering." @default.
- W3013563250 created "2020-04-03" @default.
- W3013563250 creator A5017955882 @default.
- W3013563250 creator A5025362288 @default.
- W3013563250 creator A5029348044 @default.
- W3013563250 creator A5034212396 @default.
- W3013563250 creator A5062733088 @default.
- W3013563250 creator A5071970926 @default.
- W3013563250 creator A5078260545 @default.
- W3013563250 creator A5080141249 @default.
- W3013563250 date "2020-03-26" @default.
- W3013563250 modified "2023-10-17" @default.
- W3013563250 title "Efficient differentiation of vascular smooth muscle cells from Wharton’s Jelly mesenchymal stromal cells using human platelet lysate: A potential cell source for small blood vessel engineering" @default.
- W3013563250 cites W1563180177 @default.
- W3013563250 cites W1819324525 @default.
- W3013563250 cites W1892883644 @default.
- W3013563250 cites W1972461014 @default.
- W3013563250 cites W1992718251 @default.
- W3013563250 cites W1995012800 @default.
- W3013563250 cites W2007576179 @default.
- W3013563250 cites W2025371271 @default.
- W3013563250 cites W2026534286 @default.
- W3013563250 cites W2033234827 @default.
- W3013563250 cites W2049163785 @default.
- W3013563250 cites W2059486645 @default.
- W3013563250 cites W2061678904 @default.
- W3013563250 cites W2068446558 @default.
- W3013563250 cites W2069800121 @default.
- W3013563250 cites W2072524978 @default.
- W3013563250 cites W2073383997 @default.
- W3013563250 cites W2093369644 @default.
- W3013563250 cites W2118212786 @default.
- W3013563250 cites W2122930409 @default.
- W3013563250 cites W2128353741 @default.
- W3013563250 cites W2164775384 @default.
- W3013563250 cites W2176157215 @default.
- W3013563250 cites W2343127218 @default.
- W3013563250 cites W2473979575 @default.
- W3013563250 cites W2594582105 @default.
- W3013563250 cites W2609532953 @default.
- W3013563250 cites W2617216694 @default.
- W3013563250 cites W2738204278 @default.
- W3013563250 cites W2746731449 @default.
- W3013563250 cites W2766524764 @default.
- W3013563250 cites W2766913288 @default.
- W3013563250 cites W2789607762 @default.
- W3013563250 cites W2792337594 @default.
- W3013563250 cites W2801641232 @default.
- W3013563250 cites W2807841520 @default.
- W3013563250 cites W2883537073 @default.
- W3013563250 cites W2886873108 @default.
- W3013563250 cites W2891073596 @default.
- W3013563250 cites W2897217378 @default.
- W3013563250 cites W2898593551 @default.
- W3013563250 cites W2902148809 @default.
- W3013563250 cites W2902560160 @default.
- W3013563250 cites W2906384245 @default.
- W3013563250 cites W2917006846 @default.
- W3013563250 cites W3024945503 @default.
- W3013563250 cites W4210788444 @default.
- W3013563250 cites W4313371712 @default.
- W3013563250 doi "https://doi.org/10.4252/wjsc.v12.i3.203" @default.
- W3013563250 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7118289" @default.
- W3013563250 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32266052" @default.
- W3013563250 hasPublicationYear "2020" @default.
- W3013563250 type Work @default.
- W3013563250 sameAs 3013563250 @default.
- W3013563250 citedByCount "7" @default.
- W3013563250 countsByYear W30135632502020 @default.
- W3013563250 countsByYear W30135632502021 @default.
- W3013563250 countsByYear W30135632502022 @default.
- W3013563250 countsByYear W30135632502023 @default.
- W3013563250 crossrefType "journal-article" @default.
- W3013563250 hasAuthorship W3013563250A5017955882 @default.
- W3013563250 hasAuthorship W3013563250A5025362288 @default.
- W3013563250 hasAuthorship W3013563250A5029348044 @default.
- W3013563250 hasAuthorship W3013563250A5034212396 @default.
- W3013563250 hasAuthorship W3013563250A5062733088 @default.
- W3013563250 hasAuthorship W3013563250A5071970926 @default.
- W3013563250 hasAuthorship W3013563250A5078260545 @default.
- W3013563250 hasAuthorship W3013563250A5080141249 @default.
- W3013563250 hasBestOaLocation W30135632501 @default.
- W3013563250 hasConcept C10205521 @default.
- W3013563250 hasConcept C104317684 @default.
- W3013563250 hasConcept C107459253 @default.
- W3013563250 hasConcept C116716535 @default.
- W3013563250 hasConcept C119577978 @default.
- W3013563250 hasConcept C134018914 @default.
- W3013563250 hasConcept C145103041 @default.
- W3013563250 hasConcept C153911025 @default.
- W3013563250 hasConcept C185592680 @default.
- W3013563250 hasConcept C198826908 @default.
- W3013563250 hasConcept C203014093 @default.
- W3013563250 hasConcept C207701140 @default.
- W3013563250 hasConcept C2776955114 @default.
- W3013563250 hasConcept C2779395532 @default.
- W3013563250 hasConcept C28328180 @default.
- W3013563250 hasConcept C2992686903 @default.