Matches in SemOpenAlex for { <https://semopenalex.org/work/W3013632913> ?p ?o ?g. }
- W3013632913 endingPage "3810" @default.
- W3013632913 startingPage "3803" @default.
- W3013632913 abstract "Abstract Motivation Epistasis reflects the distortion on a particular trait or phenotype resulting from the combinatorial effect of two or more genes or genetic variants. Epistasis is an important genetic foundation underlying quantitative traits in many organisms as well as in complex human diseases. However, there are two major barriers in identifying epistasis using large genomic datasets. One is that epistasis analysis will induce over-fitting of an over-saturated model with the high-dimensionality of a genomic dataset. Therefore, the problem of identifying epistasis demands efficient statistical methods. The second barrier comes from the intensive computing time for epistasis analysis, even when the appropriate model and data are specified. Results In this study, we combine statistical techniques and computational techniques to scale up epistasis analysis using Empirical Bayesian Elastic Net (EBEN) models. Specifically, we first apply a matrix manipulation strategy for pre-computing the correlation matrix and pre-filter to narrow down the search space for epistasis analysis. We then develop a parallelized approach to further accelerate the modeling process. Our experiments on synthetic and empirical genomic data demonstrate that our parallelized methods offer tens of fold speed up in comparison with the classical EBEN method which runs in a sequential manner. We applied our parallelized approach to a yeast dataset, and we were able to identify both main and epistatic effects of genetic variants associated with traits such as fitness. Availability and implementation The software is available at github.com/shilab/parEBEN." @default.
- W3013632913 created "2020-04-03" @default.
- W3013632913 creator A5022518932 @default.
- W3013632913 creator A5031945784 @default.
- W3013632913 creator A5055295290 @default.
- W3013632913 creator A5081135152 @default.
- W3013632913 date "2020-03-30" @default.
- W3013632913 modified "2023-10-18" @default.
- W3013632913 title "A parallelized strategy for epistasis analysis based on Empirical Bayesian Elastic Net models" @default.
- W3013632913 cites W1510646616 @default.
- W3013632913 cites W1542772707 @default.
- W3013632913 cites W1826688396 @default.
- W3013632913 cites W1979450315 @default.
- W3013632913 cites W1980175560 @default.
- W3013632913 cites W1980341945 @default.
- W3013632913 cites W1981704956 @default.
- W3013632913 cites W1981723690 @default.
- W3013632913 cites W1987620105 @default.
- W3013632913 cites W2007334402 @default.
- W3013632913 cites W2012069179 @default.
- W3013632913 cites W2015523078 @default.
- W3013632913 cites W2022821295 @default.
- W3013632913 cites W2024799373 @default.
- W3013632913 cites W2035300844 @default.
- W3013632913 cites W2041170649 @default.
- W3013632913 cites W2069320285 @default.
- W3013632913 cites W2075745677 @default.
- W3013632913 cites W2083413750 @default.
- W3013632913 cites W2085164119 @default.
- W3013632913 cites W2085800019 @default.
- W3013632913 cites W2090713084 @default.
- W3013632913 cites W2100697281 @default.
- W3013632913 cites W2110559492 @default.
- W3013632913 cites W2110808585 @default.
- W3013632913 cites W2118108490 @default.
- W3013632913 cites W2130498969 @default.
- W3013632913 cites W2135107356 @default.
- W3013632913 cites W2139674591 @default.
- W3013632913 cites W2140249224 @default.
- W3013632913 cites W2140514146 @default.
- W3013632913 cites W2144966952 @default.
- W3013632913 cites W2145022912 @default.
- W3013632913 cites W2145750053 @default.
- W3013632913 cites W2155078868 @default.
- W3013632913 cites W2161633633 @default.
- W3013632913 cites W2166787058 @default.
- W3013632913 cites W2170133641 @default.
- W3013632913 cites W2542459869 @default.
- W3013632913 cites W2594760713 @default.
- W3013632913 cites W2616923975 @default.
- W3013632913 cites W2626606138 @default.
- W3013632913 cites W2765601566 @default.
- W3013632913 cites W2922369430 @default.
- W3013632913 cites W2949625879 @default.
- W3013632913 cites W2952835495 @default.
- W3013632913 cites W990924570 @default.
- W3013632913 doi "https://doi.org/10.1093/bioinformatics/btaa216" @default.
- W3013632913 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7320619" @default.
- W3013632913 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32227194" @default.
- W3013632913 hasPublicationYear "2020" @default.
- W3013632913 type Work @default.
- W3013632913 sameAs 3013632913 @default.
- W3013632913 citedByCount "3" @default.
- W3013632913 countsByYear W30136329132022 @default.
- W3013632913 countsByYear W30136329132023 @default.
- W3013632913 crossrefType "journal-article" @default.
- W3013632913 hasAuthorship W3013632913A5022518932 @default.
- W3013632913 hasAuthorship W3013632913A5031945784 @default.
- W3013632913 hasAuthorship W3013632913A5055295290 @default.
- W3013632913 hasAuthorship W3013632913A5081135152 @default.
- W3013632913 hasBestOaLocation W30136329131 @default.
- W3013632913 hasConcept C104317684 @default.
- W3013632913 hasConcept C107673813 @default.
- W3013632913 hasConcept C111030470 @default.
- W3013632913 hasConcept C119857082 @default.
- W3013632913 hasConcept C124101348 @default.
- W3013632913 hasConcept C154945302 @default.
- W3013632913 hasConcept C41008148 @default.
- W3013632913 hasConcept C54355233 @default.
- W3013632913 hasConcept C61727976 @default.
- W3013632913 hasConcept C70721500 @default.
- W3013632913 hasConcept C86803240 @default.
- W3013632913 hasConceptScore W3013632913C104317684 @default.
- W3013632913 hasConceptScore W3013632913C107673813 @default.
- W3013632913 hasConceptScore W3013632913C111030470 @default.
- W3013632913 hasConceptScore W3013632913C119857082 @default.
- W3013632913 hasConceptScore W3013632913C124101348 @default.
- W3013632913 hasConceptScore W3013632913C154945302 @default.
- W3013632913 hasConceptScore W3013632913C41008148 @default.
- W3013632913 hasConceptScore W3013632913C54355233 @default.
- W3013632913 hasConceptScore W3013632913C61727976 @default.
- W3013632913 hasConceptScore W3013632913C70721500 @default.
- W3013632913 hasConceptScore W3013632913C86803240 @default.
- W3013632913 hasFunder F4320332161 @default.
- W3013632913 hasIssue "12" @default.
- W3013632913 hasLocation W30136329131 @default.
- W3013632913 hasLocation W30136329132 @default.
- W3013632913 hasOpenAccess W3013632913 @default.