Matches in SemOpenAlex for { <https://semopenalex.org/work/W3013660974> ?p ?o ?g. }
- W3013660974 endingPage "63064" @default.
- W3013660974 startingPage "63055" @default.
- W3013660974 abstract "Robotic bin-picking is a common process in modern manufacturing, logistics, and warehousing that aims to pick-up known or unknown objects with random poses out of a bin by using a robot-camera system. Rapid and accurate object pose estimation pipelines have become an escalating issue for robot picking in recent years. In this paper, a fast 6-DoF (degrees of freedom) pose estimation pipeline for random bin-picking is proposed in which the pipeline is capable of recognizing different types of objects in various cluttered scenarios and uses an adaptive threshold segment strategy to accelerate estimation and matching for the robot picking task. Particularly, our proposed method can be effectively trained with fewer samples by introducing the geometric properties of objects such as contour, normal distribution, and curvature. An experimental setup is designed with a Kinova 6-Dof robot and an Ensenso industrial 3D camera for evaluating our proposed methods with respect to four different objects. The results indicate that our proposed method achieves a 91.25% average success rate and a 0.265s average estimation time, which sufficiently demonstrates that our approach provides competitive results for fast objects pose estimation and can be applied to robotic random bin-picking tasks." @default.
- W3013660974 created "2020-04-03" @default.
- W3013660974 creator A5005838415 @default.
- W3013660974 creator A5026996018 @default.
- W3013660974 creator A5027930053 @default.
- W3013660974 creator A5040144876 @default.
- W3013660974 creator A5065912071 @default.
- W3013660974 creator A5073609666 @default.
- W3013660974 date "2020-01-01" @default.
- W3013660974 modified "2023-10-14" @default.
- W3013660974 title "Fast Object Pose Estimation Using Adaptive Threshold for Bin-Picking" @default.
- W3013660974 cites W1677409904 @default.
- W3013660974 cites W1969868017 @default.
- W3013660974 cites W2024039087 @default.
- W3013660974 cites W2052789223 @default.
- W3013660974 cites W2058761328 @default.
- W3013660974 cites W2059412355 @default.
- W3013660974 cites W2063463366 @default.
- W3013660974 cites W2074658631 @default.
- W3013660974 cites W2083624955 @default.
- W3013660974 cites W2117228865 @default.
- W3013660974 cites W2117392667 @default.
- W3013660974 cites W2119851068 @default.
- W3013660974 cites W2124154128 @default.
- W3013660974 cites W2139114878 @default.
- W3013660974 cites W2150488798 @default.
- W3013660974 cites W2156222070 @default.
- W3013660974 cites W2160643963 @default.
- W3013660974 cites W2160821342 @default.
- W3013660974 cites W2161168419 @default.
- W3013660974 cites W2161927536 @default.
- W3013660974 cites W2210838083 @default.
- W3013660974 cites W2472269674 @default.
- W3013660974 cites W2560544142 @default.
- W3013660974 cites W2560609797 @default.
- W3013660974 cites W2580726517 @default.
- W3013660974 cites W2590453059 @default.
- W3013660974 cites W2593617942 @default.
- W3013660974 cites W2604236302 @default.
- W3013660974 cites W2742312901 @default.
- W3013660974 cites W2756627269 @default.
- W3013660974 cites W2794907582 @default.
- W3013660974 cites W2795999188 @default.
- W3013660974 cites W2887599887 @default.
- W3013660974 cites W2888526011 @default.
- W3013660974 cites W2921963004 @default.
- W3013660974 cites W2963177347 @default.
- W3013660974 cites W2963288137 @default.
- W3013660974 cites W2964249569 @default.
- W3013660974 cites W3101102451 @default.
- W3013660974 cites W3103919331 @default.
- W3013660974 cites W3104125314 @default.
- W3013660974 cites W4249866455 @default.
- W3013660974 doi "https://doi.org/10.1109/access.2020.2983173" @default.
- W3013660974 hasPublicationYear "2020" @default.
- W3013660974 type Work @default.
- W3013660974 sameAs 3013660974 @default.
- W3013660974 citedByCount "20" @default.
- W3013660974 countsByYear W30136609742020 @default.
- W3013660974 countsByYear W30136609742021 @default.
- W3013660974 countsByYear W30136609742022 @default.
- W3013660974 countsByYear W30136609742023 @default.
- W3013660974 crossrefType "journal-article" @default.
- W3013660974 hasAuthorship W3013660974A5005838415 @default.
- W3013660974 hasAuthorship W3013660974A5026996018 @default.
- W3013660974 hasAuthorship W3013660974A5027930053 @default.
- W3013660974 hasAuthorship W3013660974A5040144876 @default.
- W3013660974 hasAuthorship W3013660974A5065912071 @default.
- W3013660974 hasAuthorship W3013660974A5073609666 @default.
- W3013660974 hasBestOaLocation W30136609741 @default.
- W3013660974 hasConcept C105795698 @default.
- W3013660974 hasConcept C111919701 @default.
- W3013660974 hasConcept C11413529 @default.
- W3013660974 hasConcept C153180895 @default.
- W3013660974 hasConcept C154945302 @default.
- W3013660974 hasConcept C156273044 @default.
- W3013660974 hasConcept C165064840 @default.
- W3013660974 hasConcept C199360897 @default.
- W3013660974 hasConcept C2776151529 @default.
- W3013660974 hasConcept C2781238097 @default.
- W3013660974 hasConcept C31972630 @default.
- W3013660974 hasConcept C33923547 @default.
- W3013660974 hasConcept C36613465 @default.
- W3013660974 hasConcept C41008148 @default.
- W3013660974 hasConcept C43521106 @default.
- W3013660974 hasConcept C52102323 @default.
- W3013660974 hasConcept C90509273 @default.
- W3013660974 hasConcept C98045186 @default.
- W3013660974 hasConceptScore W3013660974C105795698 @default.
- W3013660974 hasConceptScore W3013660974C111919701 @default.
- W3013660974 hasConceptScore W3013660974C11413529 @default.
- W3013660974 hasConceptScore W3013660974C153180895 @default.
- W3013660974 hasConceptScore W3013660974C154945302 @default.
- W3013660974 hasConceptScore W3013660974C156273044 @default.
- W3013660974 hasConceptScore W3013660974C165064840 @default.
- W3013660974 hasConceptScore W3013660974C199360897 @default.
- W3013660974 hasConceptScore W3013660974C2776151529 @default.
- W3013660974 hasConceptScore W3013660974C2781238097 @default.