Matches in SemOpenAlex for { <https://semopenalex.org/work/W3013712982> ?p ?o ?g. }
- W3013712982 abstract "To better retain the deep features of an image and solve the sparsity problem of the end-to-end segmentation model, we propose a new deep convolutional network model for medical image pixel segmentation, called MC-Net. The core of this network model consists of four parts, namely, an encoder network, a multiple max-pooling integration module, a cross multiscale deconvolution decoder network and a pixel-level classification layer. In the network structure of the encoder, we use multiscale convolution instead of the traditional single-channel convolution. The multiple max-pooling integration module first integrates the output features of each submodule of the encoder network and reduces the number of parameters by convolution using a kernel size of 1. At the same time, each max-pooling layer (the pooling size of each layer is different) is spliced after each convolution to achieve the translation invariance of the feature maps of each submodule. We use the output feature maps from the multiple max-pooling integration module as the input of the decoder network; the multiscale convolution of each submodule in the decoder network is cross-fused with the feature maps generated by the corresponding multiscale convolution in the encoder network. Using the above feature map processing methods solves the sparsity problem after the max-pooling layer-generating matrix and enhances the robustness of the classification. We compare our proposed model with the well-known Fully Convolutional Networks for Semantic Segmentation (FCNs), DecovNet, PSPNet, U-net, SgeNet and other state-of-the-art segmentation networks such as HyperDenseNet, MS-Dual, Espnetv2, Denseaspp using one binary Kaggle 2018 data science bowl dataset and two multiclass dataset and obtain encouraging experimental results." @default.
- W3013712982 created "2020-04-03" @default.
- W3013712982 creator A5032758701 @default.
- W3013712982 creator A5034605417 @default.
- W3013712982 creator A5057774088 @default.
- W3013712982 creator A5064149512 @default.
- W3013712982 creator A5075221279 @default.
- W3013712982 creator A5086485866 @default.
- W3013712982 date "2020-03-25" @default.
- W3013712982 modified "2023-09-26" @default.
- W3013712982 title "A New Multiple Max-pooling Integration Module and Cross Multiscale Deconvolution Network Based on Image Semantic Segmentation" @default.
- W3013712982 cites W1533861849 @default.
- W3013712982 cites W1641498739 @default.
- W3013712982 cites W1677182931 @default.
- W3013712982 cites W1686810756 @default.
- W3013712982 cites W1745334888 @default.
- W3013712982 cites W1903029394 @default.
- W3013712982 cites W1981148723 @default.
- W3013712982 cites W2194775991 @default.
- W3013712982 cites W2253429366 @default.
- W3013712982 cites W2310992461 @default.
- W3013712982 cites W2520402508 @default.
- W3013712982 cites W2560023338 @default.
- W3013712982 cites W2620296437 @default.
- W3013712982 cites W2751069891 @default.
- W3013712982 cites W2767896621 @default.
- W3013712982 cites W2792416626 @default.
- W3013712982 cites W2883311907 @default.
- W3013712982 cites W2884833628 @default.
- W3013712982 cites W2888868709 @default.
- W3013712982 cites W2901390138 @default.
- W3013712982 cites W2906551905 @default.
- W3013712982 cites W2907281511 @default.
- W3013712982 cites W2908300307 @default.
- W3013712982 cites W2910854613 @default.
- W3013712982 cites W2911878568 @default.
- W3013712982 cites W2922088567 @default.
- W3013712982 cites W2942372612 @default.
- W3013712982 cites W2949117887 @default.
- W3013712982 cites W2949283271 @default.
- W3013712982 cites W2964298947 @default.
- W3013712982 cites W3011955763 @default.
- W3013712982 cites W3017153481 @default.
- W3013712982 doi "https://doi.org/10.48550/arxiv.2003.11213" @default.
- W3013712982 hasPublicationYear "2020" @default.
- W3013712982 type Work @default.
- W3013712982 sameAs 3013712982 @default.
- W3013712982 citedByCount "1" @default.
- W3013712982 countsByYear W30137129822020 @default.
- W3013712982 crossrefType "posted-content" @default.
- W3013712982 hasAuthorship W3013712982A5032758701 @default.
- W3013712982 hasAuthorship W3013712982A5034605417 @default.
- W3013712982 hasAuthorship W3013712982A5057774088 @default.
- W3013712982 hasAuthorship W3013712982A5064149512 @default.
- W3013712982 hasAuthorship W3013712982A5075221279 @default.
- W3013712982 hasAuthorship W3013712982A5086485866 @default.
- W3013712982 hasBestOaLocation W30137129821 @default.
- W3013712982 hasConcept C104317684 @default.
- W3013712982 hasConcept C111919701 @default.
- W3013712982 hasConcept C11413529 @default.
- W3013712982 hasConcept C114614502 @default.
- W3013712982 hasConcept C118505674 @default.
- W3013712982 hasConcept C124504099 @default.
- W3013712982 hasConcept C138885662 @default.
- W3013712982 hasConcept C153180895 @default.
- W3013712982 hasConcept C154945302 @default.
- W3013712982 hasConcept C174576160 @default.
- W3013712982 hasConcept C185592680 @default.
- W3013712982 hasConcept C2776401178 @default.
- W3013712982 hasConcept C33923547 @default.
- W3013712982 hasConcept C41008148 @default.
- W3013712982 hasConcept C41895202 @default.
- W3013712982 hasConcept C45347329 @default.
- W3013712982 hasConcept C50644808 @default.
- W3013712982 hasConcept C55493867 @default.
- W3013712982 hasConcept C63479239 @default.
- W3013712982 hasConcept C70437156 @default.
- W3013712982 hasConcept C74193536 @default.
- W3013712982 hasConcept C89600930 @default.
- W3013712982 hasConceptScore W3013712982C104317684 @default.
- W3013712982 hasConceptScore W3013712982C111919701 @default.
- W3013712982 hasConceptScore W3013712982C11413529 @default.
- W3013712982 hasConceptScore W3013712982C114614502 @default.
- W3013712982 hasConceptScore W3013712982C118505674 @default.
- W3013712982 hasConceptScore W3013712982C124504099 @default.
- W3013712982 hasConceptScore W3013712982C138885662 @default.
- W3013712982 hasConceptScore W3013712982C153180895 @default.
- W3013712982 hasConceptScore W3013712982C154945302 @default.
- W3013712982 hasConceptScore W3013712982C174576160 @default.
- W3013712982 hasConceptScore W3013712982C185592680 @default.
- W3013712982 hasConceptScore W3013712982C2776401178 @default.
- W3013712982 hasConceptScore W3013712982C33923547 @default.
- W3013712982 hasConceptScore W3013712982C41008148 @default.
- W3013712982 hasConceptScore W3013712982C41895202 @default.
- W3013712982 hasConceptScore W3013712982C45347329 @default.
- W3013712982 hasConceptScore W3013712982C50644808 @default.
- W3013712982 hasConceptScore W3013712982C55493867 @default.
- W3013712982 hasConceptScore W3013712982C63479239 @default.
- W3013712982 hasConceptScore W3013712982C70437156 @default.
- W3013712982 hasConceptScore W3013712982C74193536 @default.