Matches in SemOpenAlex for { <https://semopenalex.org/work/W3013726063> ?p ?o ?g. }
- W3013726063 endingPage "3177" @default.
- W3013726063 startingPage "3159" @default.
- W3013726063 abstract "Abstract Assessing the failure probability of complex aeronautical structure is a difficult task in presence of uncertainties. In this paper, active learning polynomial chaos expansion (PCE) is developed for reliability analysis. The proposed method firstly assigns a Gaussian Process (GP) prior to the model response, and the covariance function of this GP is defined by the inner product of PCE basis function. Then, we show that a PCE model can be derived by the posterior mean of the GP, and the posterior variance is obtained to measure the local prediction error as Kriging model. Also, the expectation of the prediction variance is derived to measure the overall accuracy of the obtained PCE model. Then, a learning function, named expected indicator function prediction error (EIFPE), is proposed to update the design of experiment of PCE model for reliability analysis. This learning function is developed under the framework of the variance‐bias decomposition. It selects new points sequentially by maximizing the EIFPE that considers both the variance and bias information, and it provides a dynamic balance between global exploration and local exploitation. Finally, several test functions and engineering applications are investigated, and the results are compared with the widely used Kriging model combined with U and expected feasibility function learning function. Results show that the proposed method is efficient and accurate for complex engineering applications." @default.
- W3013726063 created "2020-04-03" @default.
- W3013726063 creator A5031417213 @default.
- W3013726063 creator A5053096325 @default.
- W3013726063 date "2020-03-25" @default.
- W3013726063 modified "2023-10-01" @default.
- W3013726063 title "Active learning polynomial chaos expansion for reliability analysis by maximizing expected indicator function prediction error" @default.
- W3013726063 cites W1030614780 @default.
- W3013726063 cites W1965093639 @default.
- W3013726063 cites W1969423837 @default.
- W3013726063 cites W1972690394 @default.
- W3013726063 cites W1980626417 @default.
- W3013726063 cites W1980635834 @default.
- W3013726063 cites W1980764637 @default.
- W3013726063 cites W1982925686 @default.
- W3013726063 cites W1983967136 @default.
- W3013726063 cites W1984550626 @default.
- W3013726063 cites W1984584655 @default.
- W3013726063 cites W1991317455 @default.
- W3013726063 cites W1995200351 @default.
- W3013726063 cites W1996005347 @default.
- W3013726063 cites W1999091229 @default.
- W3013726063 cites W1999683741 @default.
- W3013726063 cites W2007535697 @default.
- W3013726063 cites W2012814289 @default.
- W3013726063 cites W2014650652 @default.
- W3013726063 cites W2021302824 @default.
- W3013726063 cites W2028738140 @default.
- W3013726063 cites W2029138893 @default.
- W3013726063 cites W2031295804 @default.
- W3013726063 cites W2035665246 @default.
- W3013726063 cites W2042483545 @default.
- W3013726063 cites W2045355467 @default.
- W3013726063 cites W2048470906 @default.
- W3013726063 cites W2049774453 @default.
- W3013726063 cites W2057791914 @default.
- W3013726063 cites W2058542661 @default.
- W3013726063 cites W2067829701 @default.
- W3013726063 cites W2069050355 @default.
- W3013726063 cites W2070335948 @default.
- W3013726063 cites W2079566519 @default.
- W3013726063 cites W2080240494 @default.
- W3013726063 cites W2083415217 @default.
- W3013726063 cites W2092047866 @default.
- W3013726063 cites W2095391079 @default.
- W3013726063 cites W2096285034 @default.
- W3013726063 cites W2097235968 @default.
- W3013726063 cites W2097927798 @default.
- W3013726063 cites W2116321803 @default.
- W3013726063 cites W2139798157 @default.
- W3013726063 cites W2140223291 @default.
- W3013726063 cites W2158348603 @default.
- W3013726063 cites W2158829028 @default.
- W3013726063 cites W2168170318 @default.
- W3013726063 cites W2171971725 @default.
- W3013726063 cites W2193006036 @default.
- W3013726063 cites W2195310703 @default.
- W3013726063 cites W2236331705 @default.
- W3013726063 cites W2256942714 @default.
- W3013726063 cites W2301534546 @default.
- W3013726063 cites W2321504594 @default.
- W3013726063 cites W2345643602 @default.
- W3013726063 cites W2376314300 @default.
- W3013726063 cites W2416126149 @default.
- W3013726063 cites W2463315649 @default.
- W3013726063 cites W2517755966 @default.
- W3013726063 cites W2520879866 @default.
- W3013726063 cites W2556216835 @default.
- W3013726063 cites W2564963919 @default.
- W3013726063 cites W2587346616 @default.
- W3013726063 cites W2616626757 @default.
- W3013726063 cites W2623242234 @default.
- W3013726063 cites W2642249342 @default.
- W3013726063 cites W2730189265 @default.
- W3013726063 cites W2731260048 @default.
- W3013726063 cites W2752137862 @default.
- W3013726063 cites W2753125409 @default.
- W3013726063 cites W2755348198 @default.
- W3013726063 cites W2766267279 @default.
- W3013726063 cites W2773603211 @default.
- W3013726063 cites W2776810973 @default.
- W3013726063 cites W2781514027 @default.
- W3013726063 cites W2788938433 @default.
- W3013726063 cites W2790307289 @default.
- W3013726063 cites W2791131283 @default.
- W3013726063 cites W2794072378 @default.
- W3013726063 cites W2794102850 @default.
- W3013726063 cites W2794318402 @default.
- W3013726063 cites W2800617679 @default.
- W3013726063 cites W2806413590 @default.
- W3013726063 cites W2920434758 @default.
- W3013726063 cites W2962998905 @default.
- W3013726063 cites W2963077925 @default.
- W3013726063 doi "https://doi.org/10.1002/nme.6351" @default.
- W3013726063 hasPublicationYear "2020" @default.
- W3013726063 type Work @default.
- W3013726063 sameAs 3013726063 @default.
- W3013726063 citedByCount "10" @default.