Matches in SemOpenAlex for { <https://semopenalex.org/work/W3013822684> ?p ?o ?g. }
- W3013822684 endingPage "744" @default.
- W3013822684 startingPage "735" @default.
- W3013822684 abstract "Road safety performance function ( SPF ) analysis using data-driven and nonparametric methods, especially recent developed deep learning approaches, has gained increasing achievements. However, due to the learning mechanisms are hidden in a “ black box ” in deep learning, traffic features extraction and intelligent importance analysis are still unsolved and hard to generate. This paper focuses on this problem using a deciphered version of deep neural networks ( DNN ) , one of the most popular deep learning models. This approach builds on visualization, feature importance and sensitivity analysis, can evaluate the contributions of input variables on model ʼ s “ black box ” feature learning process and output decision. Firstly, a visual feature importance ( ViFI ) method that describes the importance of input features is proposed by adopting diagram and numerical-analysis. Secondly, by observing the change of weights using ViFI on unsupervised training and fine-tuning of DNN, the final contributions of input features are calculated according to importance equations for both steps that we proposed. Sequentially, a case study based on a road SPF analysis is demonstrated, using data collected from a major Canadian highway, Highway 401. The proposed method allows effective deciphering of the model ʼ s inner workings and allows the significant features to be identified and the bad features to be eliminated. Finally, the revised dataset is used in crash modeling and vehicle collision prediction, and the testing result verifies that the deciphered and revised model achieves state-of-the-art performance." @default.
- W3013822684 created "2020-04-03" @default.
- W3013822684 creator A5013625738 @default.
- W3013822684 creator A5023211438 @default.
- W3013822684 creator A5055102556 @default.
- W3013822684 creator A5077382023 @default.
- W3013822684 creator A5079515172 @default.
- W3013822684 date "2020-05-01" @default.
- W3013822684 modified "2023-09-29" @default.
- W3013822684 title "Road safety performance function analysis with visual feature importance of deep neural nets" @default.
- W3013822684 cites W1709548961 @default.
- W3013822684 cites W1849277567 @default.
- W3013822684 cites W1932198206 @default.
- W3013822684 cites W1932847118 @default.
- W3013822684 cites W2058366343 @default.
- W3013822684 cites W2066816378 @default.
- W3013822684 cites W2074818071 @default.
- W3013822684 cites W2076261376 @default.
- W3013822684 cites W2082148146 @default.
- W3013822684 cites W2085349079 @default.
- W3013822684 cites W2100495367 @default.
- W3013822684 cites W2118858186 @default.
- W3013822684 cites W2136922672 @default.
- W3013822684 cites W2240067561 @default.
- W3013822684 cites W2274565976 @default.
- W3013822684 cites W2528491735 @default.
- W3013822684 cites W2554930721 @default.
- W3013822684 cites W2576291079 @default.
- W3013822684 cites W2593634001 @default.
- W3013822684 cites W2597603852 @default.
- W3013822684 cites W2605409611 @default.
- W3013822684 cites W2730947260 @default.
- W3013822684 cites W2743180505 @default.
- W3013822684 cites W2745565856 @default.
- W3013822684 cites W2765820394 @default.
- W3013822684 cites W2774008760 @default.
- W3013822684 cites W2887183215 @default.
- W3013822684 cites W2887189984 @default.
- W3013822684 cites W2904290903 @default.
- W3013822684 cites W2919115771 @default.
- W3013822684 cites W2962772482 @default.
- W3013822684 cites W2963207607 @default.
- W3013822684 cites W2963542991 @default.
- W3013822684 doi "https://doi.org/10.1109/jas.2020.1003108" @default.
- W3013822684 hasPublicationYear "2020" @default.
- W3013822684 type Work @default.
- W3013822684 sameAs 3013822684 @default.
- W3013822684 citedByCount "21" @default.
- W3013822684 countsByYear W30138226842020 @default.
- W3013822684 countsByYear W30138226842021 @default.
- W3013822684 countsByYear W30138226842022 @default.
- W3013822684 countsByYear W30138226842023 @default.
- W3013822684 crossrefType "journal-article" @default.
- W3013822684 hasAuthorship W3013822684A5013625738 @default.
- W3013822684 hasAuthorship W3013822684A5023211438 @default.
- W3013822684 hasAuthorship W3013822684A5055102556 @default.
- W3013822684 hasAuthorship W3013822684A5077382023 @default.
- W3013822684 hasAuthorship W3013822684A5079515172 @default.
- W3013822684 hasConcept C108583219 @default.
- W3013822684 hasConcept C111919701 @default.
- W3013822684 hasConcept C119857082 @default.
- W3013822684 hasConcept C124101348 @default.
- W3013822684 hasConcept C138885662 @default.
- W3013822684 hasConcept C14036430 @default.
- W3013822684 hasConcept C153180895 @default.
- W3013822684 hasConcept C154945302 @default.
- W3013822684 hasConcept C183469790 @default.
- W3013822684 hasConcept C199360897 @default.
- W3013822684 hasConcept C2776401178 @default.
- W3013822684 hasConcept C36464697 @default.
- W3013822684 hasConcept C41008148 @default.
- W3013822684 hasConcept C41895202 @default.
- W3013822684 hasConcept C50644808 @default.
- W3013822684 hasConcept C52622490 @default.
- W3013822684 hasConcept C78458016 @default.
- W3013822684 hasConcept C86803240 @default.
- W3013822684 hasConcept C94966114 @default.
- W3013822684 hasConcept C98045186 @default.
- W3013822684 hasConceptScore W3013822684C108583219 @default.
- W3013822684 hasConceptScore W3013822684C111919701 @default.
- W3013822684 hasConceptScore W3013822684C119857082 @default.
- W3013822684 hasConceptScore W3013822684C124101348 @default.
- W3013822684 hasConceptScore W3013822684C138885662 @default.
- W3013822684 hasConceptScore W3013822684C14036430 @default.
- W3013822684 hasConceptScore W3013822684C153180895 @default.
- W3013822684 hasConceptScore W3013822684C154945302 @default.
- W3013822684 hasConceptScore W3013822684C183469790 @default.
- W3013822684 hasConceptScore W3013822684C199360897 @default.
- W3013822684 hasConceptScore W3013822684C2776401178 @default.
- W3013822684 hasConceptScore W3013822684C36464697 @default.
- W3013822684 hasConceptScore W3013822684C41008148 @default.
- W3013822684 hasConceptScore W3013822684C41895202 @default.
- W3013822684 hasConceptScore W3013822684C50644808 @default.
- W3013822684 hasConceptScore W3013822684C52622490 @default.
- W3013822684 hasConceptScore W3013822684C78458016 @default.
- W3013822684 hasConceptScore W3013822684C86803240 @default.
- W3013822684 hasConceptScore W3013822684C94966114 @default.
- W3013822684 hasConceptScore W3013822684C98045186 @default.