Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014064863> ?p ?o ?g. }
- W3014064863 endingPage "234" @default.
- W3014064863 startingPage "218" @default.
- W3014064863 abstract "Convolutional neural network (CNN) models have recently demonstrated impressive performance in medical image analysis. However, there is no clear understanding of why they perform so well, or what they have learned. In this paper, a three-dimensional convolutional neural network (3D-CNN) is employed to classify brain MRI scans into two predefined groups. In addition, a genetic algorithm based brain masking (GABM) method is proposed as a visualization technique that provides new insights into the function of the 3D-CNN. The proposed GABM method consists of two main steps. In the first step, a set of brain MRI scans is used to train the 3D-CNN. In the second step, a genetic algorithm (GA) is applied to discover knowledgeable brain regions in the MRI scans. The knowledgeable regions are those areas of the brain which the 3D-CNN has mostly used to extract important and discriminative features from them. For applying GA on the brain MRI scans, a new chromosome encoding approach is proposed. The proposed framework has been evaluated using ADNI (including 140 subjects for Alzheimer’s disease classification) and ABIDE (including 1000 subjects for Autism classification) brain MRI datasets. Experimental results show a 5-fold classification accuracy of 0.85 for the ADNI dataset and 0.70 for the ABIDE dataset. The proposed GABM method has extracted 6 to 65 knowledgeable brain regions in ADNI dataset (and 15 to 75 knowledgeable brain regions in ABIDE dataset). These regions are interpreted as the segments of the brain which are mostly used by the 3D-CNN to extract features for brain disease classification. Experimental results show that besides the model interpretability, the proposed GABM method has increased final performance of the classification model in some cases with respect to model parameters." @default.
- W3014064863 created "2020-04-03" @default.
- W3014064863 creator A5020166638 @default.
- W3014064863 creator A5039709638 @default.
- W3014064863 date "2020-06-01" @default.
- W3014064863 modified "2023-10-13" @default.
- W3014064863 title "Brain MRI analysis using a deep learning based evolutionary approach" @default.
- W3014064863 cites W1535448720 @default.
- W3014064863 cites W1667869507 @default.
- W3014064863 cites W1861101878 @default.
- W3014064863 cites W1964191921 @default.
- W3014064863 cites W2006591500 @default.
- W3014064863 cites W2009849234 @default.
- W3014064863 cites W2061696649 @default.
- W3014064863 cites W2070231119 @default.
- W3014064863 cites W2091176864 @default.
- W3014064863 cites W2091532770 @default.
- W3014064863 cites W2102605133 @default.
- W3014064863 cites W2117556382 @default.
- W3014064863 cites W2145215768 @default.
- W3014064863 cites W2167822639 @default.
- W3014064863 cites W2168825483 @default.
- W3014064863 cites W2190124444 @default.
- W3014064863 cites W2218823830 @default.
- W3014064863 cites W2255548690 @default.
- W3014064863 cites W2318111717 @default.
- W3014064863 cites W2339006771 @default.
- W3014064863 cites W2387037801 @default.
- W3014064863 cites W2473821704 @default.
- W3014064863 cites W2558927549 @default.
- W3014064863 cites W2569531558 @default.
- W3014064863 cites W2592343442 @default.
- W3014064863 cites W2592929672 @default.
- W3014064863 cites W2736567829 @default.
- W3014064863 cites W2752558629 @default.
- W3014064863 cites W2755156925 @default.
- W3014064863 cites W2769792344 @default.
- W3014064863 cites W2796196973 @default.
- W3014064863 cites W2801832658 @default.
- W3014064863 cites W2807222878 @default.
- W3014064863 cites W2890732922 @default.
- W3014064863 cites W2893483035 @default.
- W3014064863 cites W2912710958 @default.
- W3014064863 cites W2916845318 @default.
- W3014064863 cites W2917393555 @default.
- W3014064863 cites W2917571395 @default.
- W3014064863 cites W2919115771 @default.
- W3014064863 cites W2950651700 @default.
- W3014064863 cites W2963374347 @default.
- W3014064863 cites W3106090851 @default.
- W3014064863 doi "https://doi.org/10.1016/j.neunet.2020.03.017" @default.
- W3014064863 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32259762" @default.
- W3014064863 hasPublicationYear "2020" @default.
- W3014064863 type Work @default.
- W3014064863 sameAs 3014064863 @default.
- W3014064863 citedByCount "56" @default.
- W3014064863 countsByYear W30140648632020 @default.
- W3014064863 countsByYear W30140648632021 @default.
- W3014064863 countsByYear W30140648632022 @default.
- W3014064863 countsByYear W30140648632023 @default.
- W3014064863 crossrefType "journal-article" @default.
- W3014064863 hasAuthorship W3014064863A5020166638 @default.
- W3014064863 hasAuthorship W3014064863A5039709638 @default.
- W3014064863 hasConcept C108583219 @default.
- W3014064863 hasConcept C119857082 @default.
- W3014064863 hasConcept C153180895 @default.
- W3014064863 hasConcept C154945302 @default.
- W3014064863 hasConcept C169760540 @default.
- W3014064863 hasConcept C177264268 @default.
- W3014064863 hasConcept C199360897 @default.
- W3014064863 hasConcept C36464697 @default.
- W3014064863 hasConcept C41008148 @default.
- W3014064863 hasConcept C58693492 @default.
- W3014064863 hasConcept C81363708 @default.
- W3014064863 hasConcept C86803240 @default.
- W3014064863 hasConcept C97931131 @default.
- W3014064863 hasConceptScore W3014064863C108583219 @default.
- W3014064863 hasConceptScore W3014064863C119857082 @default.
- W3014064863 hasConceptScore W3014064863C153180895 @default.
- W3014064863 hasConceptScore W3014064863C154945302 @default.
- W3014064863 hasConceptScore W3014064863C169760540 @default.
- W3014064863 hasConceptScore W3014064863C177264268 @default.
- W3014064863 hasConceptScore W3014064863C199360897 @default.
- W3014064863 hasConceptScore W3014064863C36464697 @default.
- W3014064863 hasConceptScore W3014064863C41008148 @default.
- W3014064863 hasConceptScore W3014064863C58693492 @default.
- W3014064863 hasConceptScore W3014064863C81363708 @default.
- W3014064863 hasConceptScore W3014064863C86803240 @default.
- W3014064863 hasConceptScore W3014064863C97931131 @default.
- W3014064863 hasLocation W30140648631 @default.
- W3014064863 hasLocation W30140648632 @default.
- W3014064863 hasOpenAccess W3014064863 @default.
- W3014064863 hasPrimaryLocation W30140648631 @default.
- W3014064863 hasRelatedWork W2024160000 @default.
- W3014064863 hasRelatedWork W2729514902 @default.
- W3014064863 hasRelatedWork W2731899572 @default.
- W3014064863 hasRelatedWork W2999805992 @default.
- W3014064863 hasRelatedWork W3002526821 @default.