Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014080659> ?p ?o ?g. }
- W3014080659 endingPage "e201262" @default.
- W3014080659 startingPage "e201262" @default.
- W3014080659 abstract "Suicide is a leading cause of mortality, with suicide-related deaths increasing in recent years. Automated methods for individualized risk prediction have great potential to address this growing public health threat. To facilitate their adoption, they must first be validated across diverse health care settings.To evaluate the generalizability and cross-site performance of a risk prediction method using readily available structured data from electronic health records in predicting incident suicide attempts across multiple, independent, US health care systems.For this prognostic study, data were extracted from longitudinal electronic health record data comprising International Classification of Diseases, Ninth Revision diagnoses, laboratory test results, procedures codes, and medications for more than 3.7 million patients from 5 independent health care systems participating in the Accessible Research Commons for Health network. Across sites, 6 to 17 years' worth of data were available, up to 2018. Outcomes were defined by International Classification of Diseases, Ninth Revision codes reflecting incident suicide attempts (with positive predictive value >0.70 according to expert clinician medical record review). Models were trained using naive Bayes classifiers in each of the 5 systems. Models were cross-validated in independent data sets at each site, and performance metrics were calculated. Data analysis was performed from November 2017 to August 2019.The primary outcome was suicide attempt as defined by a previously validated case definition using International Classification of Diseases, Ninth Revision codes. The accuracy and timeliness of the prediction were measured at each site.Across the 5 health care systems, of the 3 714 105 patients (2 130 454 female [57.2%]) included in the analysis, 39 162 cases (1.1%) were identified. Predictive features varied by site but, as expected, the most common predictors reflected mental health conditions (eg, borderline personality disorder, with odds ratios of 8.1-12.9, and bipolar disorder, with odds ratios of 0.9-9.1) and substance use disorders (eg, drug withdrawal syndrome, with odds ratios of 7.0-12.9). Despite variation in geographical location, demographic characteristics, and population health characteristics, model performance was similar across sites, with areas under the curve ranging from 0.71 (95% CI, 0.70-0.72) to 0.76 (95% CI, 0.75-0.77). Across sites, at a specificity of 90%, the models detected a mean of 38% of cases a mean of 2.1 years in advance.Across 5 diverse health care systems, a computationally efficient approach leveraging the full spectrum of structured electronic health record data was able to detect the risk of suicidal behavior in unselected patients. This approach could facilitate the development of clinical decision support tools that inform risk reduction interventions." @default.
- W3014080659 created "2020-04-03" @default.
- W3014080659 creator A5005945283 @default.
- W3014080659 creator A5014407658 @default.
- W3014080659 creator A5016427403 @default.
- W3014080659 creator A5018662278 @default.
- W3014080659 creator A5022956647 @default.
- W3014080659 creator A5023500196 @default.
- W3014080659 creator A5024502122 @default.
- W3014080659 creator A5026951561 @default.
- W3014080659 creator A5043881563 @default.
- W3014080659 creator A5044998046 @default.
- W3014080659 creator A5048565929 @default.
- W3014080659 creator A5050322352 @default.
- W3014080659 creator A5053060587 @default.
- W3014080659 creator A5053425762 @default.
- W3014080659 creator A5055125808 @default.
- W3014080659 creator A5058583723 @default.
- W3014080659 creator A5061247849 @default.
- W3014080659 creator A5075275684 @default.
- W3014080659 creator A5080356855 @default.
- W3014080659 creator A5082317510 @default.
- W3014080659 creator A5087242254 @default.
- W3014080659 creator A5091670952 @default.
- W3014080659 date "2020-03-25" @default.
- W3014080659 modified "2023-10-13" @default.
- W3014080659 title "Validation of an Electronic Health Record–Based Suicide Risk Prediction Modeling Approach Across Multiple Health Care Systems" @default.
- W3014080659 cites W202860122 @default.
- W3014080659 cites W2037299548 @default.
- W3014080659 cites W2108844216 @default.
- W3014080659 cites W2116789248 @default.
- W3014080659 cites W2121468917 @default.
- W3014080659 cites W2123712309 @default.
- W3014080659 cites W2148563768 @default.
- W3014080659 cites W2167414941 @default.
- W3014080659 cites W2276530525 @default.
- W3014080659 cites W2509888018 @default.
- W3014080659 cites W2518663325 @default.
- W3014080659 cites W2554980225 @default.
- W3014080659 cites W2602496186 @default.
- W3014080659 cites W2605512411 @default.
- W3014080659 cites W2804266670 @default.
- W3014080659 cites W2806563890 @default.
- W3014080659 cites W2807596753 @default.
- W3014080659 cites W2904990534 @default.
- W3014080659 cites W2921616123 @default.
- W3014080659 cites W2955808745 @default.
- W3014080659 cites W4233178840 @default.
- W3014080659 cites W4237184162 @default.
- W3014080659 cites W4254710207 @default.
- W3014080659 doi "https://doi.org/10.1001/jamanetworkopen.2020.1262" @default.
- W3014080659 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32211868" @default.
- W3014080659 hasPublicationYear "2020" @default.
- W3014080659 type Work @default.
- W3014080659 sameAs 3014080659 @default.
- W3014080659 citedByCount "54" @default.
- W3014080659 countsByYear W30140806592020 @default.
- W3014080659 countsByYear W30140806592021 @default.
- W3014080659 countsByYear W30140806592022 @default.
- W3014080659 countsByYear W30140806592023 @default.
- W3014080659 crossrefType "journal-article" @default.
- W3014080659 hasAuthorship W3014080659A5005945283 @default.
- W3014080659 hasAuthorship W3014080659A5014407658 @default.
- W3014080659 hasAuthorship W3014080659A5016427403 @default.
- W3014080659 hasAuthorship W3014080659A5018662278 @default.
- W3014080659 hasAuthorship W3014080659A5022956647 @default.
- W3014080659 hasAuthorship W3014080659A5023500196 @default.
- W3014080659 hasAuthorship W3014080659A5024502122 @default.
- W3014080659 hasAuthorship W3014080659A5026951561 @default.
- W3014080659 hasAuthorship W3014080659A5043881563 @default.
- W3014080659 hasAuthorship W3014080659A5044998046 @default.
- W3014080659 hasAuthorship W3014080659A5048565929 @default.
- W3014080659 hasAuthorship W3014080659A5050322352 @default.
- W3014080659 hasAuthorship W3014080659A5053060587 @default.
- W3014080659 hasAuthorship W3014080659A5053425762 @default.
- W3014080659 hasAuthorship W3014080659A5055125808 @default.
- W3014080659 hasAuthorship W3014080659A5058583723 @default.
- W3014080659 hasAuthorship W3014080659A5061247849 @default.
- W3014080659 hasAuthorship W3014080659A5075275684 @default.
- W3014080659 hasAuthorship W3014080659A5080356855 @default.
- W3014080659 hasAuthorship W3014080659A5082317510 @default.
- W3014080659 hasAuthorship W3014080659A5087242254 @default.
- W3014080659 hasAuthorship W3014080659A5091670952 @default.
- W3014080659 hasBestOaLocation W30140806591 @default.
- W3014080659 hasConcept C121332964 @default.
- W3014080659 hasConcept C124101348 @default.
- W3014080659 hasConcept C126838900 @default.
- W3014080659 hasConcept C138496976 @default.
- W3014080659 hasConcept C138816342 @default.
- W3014080659 hasConcept C142724271 @default.
- W3014080659 hasConcept C15744967 @default.
- W3014080659 hasConcept C159110408 @default.
- W3014080659 hasConcept C160735492 @default.
- W3014080659 hasConcept C162324750 @default.
- W3014080659 hasConcept C187155963 @default.
- W3014080659 hasConcept C195910791 @default.
- W3014080659 hasConcept C24890656 @default.
- W3014080659 hasConcept C27158222 @default.