Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014129273> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3014129273 abstract "Abstract Introduction The main target of COVID-19 is the lungs where it may cause pneumonia in severely ill patients. Chest X-ray is an important diagnostic test to assess the lung for the damaging effects of COVID-19. Many other microbial pathogens can also cause damage to lungs leading to pneumonia but there are certain radiological features which can favor the diagnosis of pneumonia caused by COVID-19. With the rising number of cases of COVID-19, it would be imperative to develop computer programs which may assist the health professionals in the prevailing scenario. Materials & Methods A total of two hundred and seventy eight (278) images of chest X-rays have been assessed by applying ResNet-50 convolutional neural network architectures in the present study. The digital images were acquired from the public repositories provided by University of Montreal and National Institutes of Health. These digital images of Chest X-rays were divided into three groups labeled as normal, pneumonia and COVID-19. The third group contains digital images of chest X-rays of patients diagnosed with COVID-19 infection while the second group contains images of lung with pneumonia caused by other pathogens. Results The radiological images included in the data set are 89 images of lungs with COVID-19 infection, 93 images of lungs without any radiological abnormality and 96 images of patient with pneumonia caused by other pathogens. In this data set, 80% of the images were employed for training, and 20% for testing. A pre-trained (on ImageNet data set) ResNet-50 architecture was used to diagnose the cases of COVID-19 infections on lung X-ray images. The analysis of the data revealed that computer vision based program achieved diagnostic accuracy of 98.18 %, and F1-score of 98.19. Conclusion The performance of convolutional neural network regarding the differentiation of pulmonary changes caused by COVID-19 from the other type of pneumonias on digital images of the chest X-rays is excellent and it may be an extremely useful adjunct tool for the health professionals." @default.
- W3014129273 created "2020-04-10" @default.
- W3014129273 creator A5011142960 @default.
- W3014129273 creator A5028085307 @default.
- W3014129273 creator A5077240945 @default.
- W3014129273 creator A5079352095 @default.
- W3014129273 date "2020-03-31" @default.
- W3014129273 modified "2023-10-06" @default.
- W3014129273 title "The diagnostic evaluation of Convolutional Neural Network (CNN) for the assessment of chest X-ray of patients infected with COVID-19" @default.
- W3014129273 cites W2117539524 @default.
- W3014129273 cites W2141877163 @default.
- W3014129273 cites W2166867592 @default.
- W3014129273 cites W2194775991 @default.
- W3014129273 cites W2895598278 @default.
- W3014129273 cites W2903899730 @default.
- W3014129273 cites W2934946272 @default.
- W3014129273 cites W2939788146 @default.
- W3014129273 cites W3004735879 @default.
- W3014129273 cites W3005477624 @default.
- W3014129273 cites W3007273493 @default.
- W3014129273 cites W3011825565 @default.
- W3014129273 cites W3165656738 @default.
- W3014129273 doi "https://doi.org/10.1101/2020.03.26.20044610" @default.
- W3014129273 hasPublicationYear "2020" @default.
- W3014129273 type Work @default.
- W3014129273 sameAs 3014129273 @default.
- W3014129273 citedByCount "47" @default.
- W3014129273 countsByYear W30141292732020 @default.
- W3014129273 countsByYear W30141292732021 @default.
- W3014129273 countsByYear W30141292732022 @default.
- W3014129273 countsByYear W30141292732023 @default.
- W3014129273 crossrefType "posted-content" @default.
- W3014129273 hasAuthorship W3014129273A5011142960 @default.
- W3014129273 hasAuthorship W3014129273A5028085307 @default.
- W3014129273 hasAuthorship W3014129273A5077240945 @default.
- W3014129273 hasAuthorship W3014129273A5079352095 @default.
- W3014129273 hasBestOaLocation W30141292731 @default.
- W3014129273 hasConcept C118552586 @default.
- W3014129273 hasConcept C126322002 @default.
- W3014129273 hasConcept C126838900 @default.
- W3014129273 hasConcept C142724271 @default.
- W3014129273 hasConcept C154945302 @default.
- W3014129273 hasConcept C190892606 @default.
- W3014129273 hasConcept C2777714996 @default.
- W3014129273 hasConcept C2777914695 @default.
- W3014129273 hasConcept C2779134260 @default.
- W3014129273 hasConcept C2994024180 @default.
- W3014129273 hasConcept C3008058167 @default.
- W3014129273 hasConcept C41008148 @default.
- W3014129273 hasConcept C50965678 @default.
- W3014129273 hasConcept C524204448 @default.
- W3014129273 hasConcept C71924100 @default.
- W3014129273 hasConcept C81363708 @default.
- W3014129273 hasConceptScore W3014129273C118552586 @default.
- W3014129273 hasConceptScore W3014129273C126322002 @default.
- W3014129273 hasConceptScore W3014129273C126838900 @default.
- W3014129273 hasConceptScore W3014129273C142724271 @default.
- W3014129273 hasConceptScore W3014129273C154945302 @default.
- W3014129273 hasConceptScore W3014129273C190892606 @default.
- W3014129273 hasConceptScore W3014129273C2777714996 @default.
- W3014129273 hasConceptScore W3014129273C2777914695 @default.
- W3014129273 hasConceptScore W3014129273C2779134260 @default.
- W3014129273 hasConceptScore W3014129273C2994024180 @default.
- W3014129273 hasConceptScore W3014129273C3008058167 @default.
- W3014129273 hasConceptScore W3014129273C41008148 @default.
- W3014129273 hasConceptScore W3014129273C50965678 @default.
- W3014129273 hasConceptScore W3014129273C524204448 @default.
- W3014129273 hasConceptScore W3014129273C71924100 @default.
- W3014129273 hasConceptScore W3014129273C81363708 @default.
- W3014129273 hasLocation W30141292731 @default.
- W3014129273 hasOpenAccess W3014129273 @default.
- W3014129273 hasPrimaryLocation W30141292731 @default.
- W3014129273 hasRelatedWork W2031341258 @default.
- W3014129273 hasRelatedWork W2322525259 @default.
- W3014129273 hasRelatedWork W2323943981 @default.
- W3014129273 hasRelatedWork W2417837811 @default.
- W3014129273 hasRelatedWork W2419079049 @default.
- W3014129273 hasRelatedWork W2946336339 @default.
- W3014129273 hasRelatedWork W2946742527 @default.
- W3014129273 hasRelatedWork W3107959237 @default.
- W3014129273 hasRelatedWork W4205361111 @default.
- W3014129273 hasRelatedWork W4381196950 @default.
- W3014129273 isParatext "false" @default.
- W3014129273 isRetracted "false" @default.
- W3014129273 magId "3014129273" @default.
- W3014129273 workType "article" @default.