Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014151993> ?p ?o ?g. }
- W3014151993 endingPage "247" @default.
- W3014151993 startingPage "234" @default.
- W3014151993 abstract "The COVID-19 coronavirus is one of the devastating viruses according to the world health organization. This novel virus leads to pneumonia, which is an infection that inflames the lungs’ air sacs of a human. One of the methods to detect those inflames is by using x-rays for the chest. In this paper, a pneumonia chest x-ray detection based on generative adversarial networks (GAN) with a fine-tuned deep transfer learning for a limited dataset will be presented. The use of GAN positively affects the proposed model robustness and made it immune to the overfitting problem and helps in generating more images from the dataset. The dataset used in this research consists of 5863 X-ray images with two categories: Normal and Pneumonia. This research uses only 10% of the dataset for training data and generates 90% of images using GAN to prove the efficiency of the proposed model. Through the paper, AlexNet, GoogLeNet, Squeeznet, and Resnet18 are selected as deep transfer learning models to detect the pneumonia from chest x-rays. Those models are selected based on their small number of layers on their architectures, which will reflect in reducing the complexity of the models and the consumed memory and time. Using a combination of GAN and deep transfer models proved it is efficiency according to testing accuracy measurement. The research concludes that the Resnet18 is the most appropriate deep transfer model according to testing accuracy measurement and achieved 99% with the other performance metrics such as precision, recall, and F1 score while using GAN as an image augmenter. Finally, a comparison result was carried out at the end of the research with related work which used the same dataset except that this research used only 10% of original dataset. The presented work achieved a superior result than the related work in terms of testing accuracy." @default.
- W3014151993 created "2020-04-10" @default.
- W3014151993 creator A5001069060 @default.
- W3014151993 creator A5037470010 @default.
- W3014151993 creator A5049446003 @default.
- W3014151993 creator A5085432173 @default.
- W3014151993 date "2022-11-18" @default.
- W3014151993 modified "2023-10-04" @default.
- W3014151993 title "Detection of Coronavirus (COVID-19) Associated Pneumonia Based on Generative Adversarial Networks and a Fine-Tuned Deep Transfer Learning Model Using Chest X-ray Dataset" @default.
- W3014151993 cites W2097117768 @default.
- W3014151993 cites W2108598243 @default.
- W3014151993 cites W2183341477 @default.
- W3014151993 cites W2194775991 @default.
- W3014151993 cites W2417429787 @default.
- W3014151993 cites W2483150776 @default.
- W3014151993 cites W2531409750 @default.
- W3014151993 cites W2789367970 @default.
- W3014151993 cites W2794284562 @default.
- W3014151993 cites W2803760365 @default.
- W3014151993 cites W2890139949 @default.
- W3014151993 cites W2893531431 @default.
- W3014151993 cites W2894885919 @default.
- W3014151993 cites W2909194804 @default.
- W3014151993 cites W2919115771 @default.
- W3014151993 cites W2920831020 @default.
- W3014151993 cites W2923682152 @default.
- W3014151993 cites W2924911266 @default.
- W3014151993 cites W2935703330 @default.
- W3014151993 cites W2954996726 @default.
- W3014151993 cites W2956123709 @default.
- W3014151993 cites W2963446712 @default.
- W3014151993 cites W2963466845 @default.
- W3014151993 cites W2964350391 @default.
- W3014151993 cites W2995831381 @default.
- W3014151993 cites W3002256141 @default.
- W3014151993 cites W3003663164 @default.
- W3014151993 cites W3004921770 @default.
- W3014151993 cites W3009351032 @default.
- W3014151993 cites W4238291540 @default.
- W3014151993 doi "https://doi.org/10.1007/978-3-031-20601-6_22" @default.
- W3014151993 hasPublicationYear "2022" @default.
- W3014151993 type Work @default.
- W3014151993 sameAs 3014151993 @default.
- W3014151993 citedByCount "23" @default.
- W3014151993 countsByYear W30141519932020 @default.
- W3014151993 countsByYear W30141519932021 @default.
- W3014151993 countsByYear W30141519932022 @default.
- W3014151993 countsByYear W30141519932023 @default.
- W3014151993 crossrefType "book-chapter" @default.
- W3014151993 hasAuthorship W3014151993A5001069060 @default.
- W3014151993 hasAuthorship W3014151993A5037470010 @default.
- W3014151993 hasAuthorship W3014151993A5049446003 @default.
- W3014151993 hasAuthorship W3014151993A5085432173 @default.
- W3014151993 hasBestOaLocation W30141519932 @default.
- W3014151993 hasConcept C104317684 @default.
- W3014151993 hasConcept C108583219 @default.
- W3014151993 hasConcept C119857082 @default.
- W3014151993 hasConcept C126322002 @default.
- W3014151993 hasConcept C142724271 @default.
- W3014151993 hasConcept C150899416 @default.
- W3014151993 hasConcept C154945302 @default.
- W3014151993 hasConcept C22019652 @default.
- W3014151993 hasConcept C2777914695 @default.
- W3014151993 hasConcept C2779134260 @default.
- W3014151993 hasConcept C2988773926 @default.
- W3014151993 hasConcept C3008058167 @default.
- W3014151993 hasConcept C41008148 @default.
- W3014151993 hasConcept C50644808 @default.
- W3014151993 hasConcept C524204448 @default.
- W3014151993 hasConcept C55493867 @default.
- W3014151993 hasConcept C63479239 @default.
- W3014151993 hasConcept C71924100 @default.
- W3014151993 hasConcept C86803240 @default.
- W3014151993 hasConceptScore W3014151993C104317684 @default.
- W3014151993 hasConceptScore W3014151993C108583219 @default.
- W3014151993 hasConceptScore W3014151993C119857082 @default.
- W3014151993 hasConceptScore W3014151993C126322002 @default.
- W3014151993 hasConceptScore W3014151993C142724271 @default.
- W3014151993 hasConceptScore W3014151993C150899416 @default.
- W3014151993 hasConceptScore W3014151993C154945302 @default.
- W3014151993 hasConceptScore W3014151993C22019652 @default.
- W3014151993 hasConceptScore W3014151993C2777914695 @default.
- W3014151993 hasConceptScore W3014151993C2779134260 @default.
- W3014151993 hasConceptScore W3014151993C2988773926 @default.
- W3014151993 hasConceptScore W3014151993C3008058167 @default.
- W3014151993 hasConceptScore W3014151993C41008148 @default.
- W3014151993 hasConceptScore W3014151993C50644808 @default.
- W3014151993 hasConceptScore W3014151993C524204448 @default.
- W3014151993 hasConceptScore W3014151993C55493867 @default.
- W3014151993 hasConceptScore W3014151993C63479239 @default.
- W3014151993 hasConceptScore W3014151993C71924100 @default.
- W3014151993 hasConceptScore W3014151993C86803240 @default.
- W3014151993 hasLocation W30141519931 @default.
- W3014151993 hasLocation W30141519932 @default.
- W3014151993 hasOpenAccess W3014151993 @default.
- W3014151993 hasPrimaryLocation W30141519931 @default.
- W3014151993 hasRelatedWork W2946016983 @default.
- W3014151993 hasRelatedWork W2960456850 @default.