Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014155057> ?p ?o ?g. }
- W3014155057 endingPage "653" @default.
- W3014155057 startingPage "630" @default.
- W3014155057 abstract "Standard multilevel models focus on variables that predict the mean while the within-group variability is largely treated as a nuisance. Recent work has shown the advantage of including predictors for both the mean (the location submodel) and the variability (the scale submodel) within a single model. Constrained versions of the model can be fit in standard mixed effect model software, but the most general version with random effects in each of the location and scale submodels has been noted for being difficult to fit and estimate in software. However, the latest release of Mplus includes new capabilities that facilitate fitting the general version of the model as a multilevel structural equation model (SEM). This article introduces the general form of the model that includes location and scale random effects (called the location-scale model) and notes how it can be envisioned as a multilevel SEM. We provide a tutorial with example analyses and Mplus code for the model with two-level cross-sectional data and three-level repeated measures data and discuss how such a model has potential to extend recent developments in organizational science." @default.
- W3014155057 created "2020-04-10" @default.
- W3014155057 creator A5057205670 @default.
- W3014155057 date "2020-03-30" @default.
- W3014155057 modified "2023-10-13" @default.
- W3014155057 title "Specifying Location-Scale Models for Heterogeneous Variances as Multilevel SEMs" @default.
- W3014155057 cites W1484328682 @default.
- W3014155057 cites W1911081242 @default.
- W3014155057 cites W1981766652 @default.
- W3014155057 cites W1983337708 @default.
- W3014155057 cites W1988361240 @default.
- W3014155057 cites W1997316539 @default.
- W3014155057 cites W2015902369 @default.
- W3014155057 cites W2019080254 @default.
- W3014155057 cites W2024467025 @default.
- W3014155057 cites W2026124757 @default.
- W3014155057 cites W2032627803 @default.
- W3014155057 cites W2042301765 @default.
- W3014155057 cites W2049327502 @default.
- W3014155057 cites W2050000497 @default.
- W3014155057 cites W2062269194 @default.
- W3014155057 cites W2082031604 @default.
- W3014155057 cites W2100599661 @default.
- W3014155057 cites W2116952601 @default.
- W3014155057 cites W2140287026 @default.
- W3014155057 cites W2141125801 @default.
- W3014155057 cites W2141772436 @default.
- W3014155057 cites W2148534890 @default.
- W3014155057 cites W2157335584 @default.
- W3014155057 cites W2161970884 @default.
- W3014155057 cites W2163995972 @default.
- W3014155057 cites W2166190112 @default.
- W3014155057 cites W2170676831 @default.
- W3014155057 cites W2218703457 @default.
- W3014155057 cites W2291575466 @default.
- W3014155057 cites W2316175917 @default.
- W3014155057 cites W2345776924 @default.
- W3014155057 cites W2428070046 @default.
- W3014155057 cites W2620788756 @default.
- W3014155057 cites W2765527842 @default.
- W3014155057 cites W2772997641 @default.
- W3014155057 cites W2777635006 @default.
- W3014155057 cites W2777994556 @default.
- W3014155057 cites W2893937064 @default.
- W3014155057 cites W2944092734 @default.
- W3014155057 cites W2964606584 @default.
- W3014155057 cites W4242086080 @default.
- W3014155057 doi "https://doi.org/10.1177/1094428120913083" @default.
- W3014155057 hasPublicationYear "2020" @default.
- W3014155057 type Work @default.
- W3014155057 sameAs 3014155057 @default.
- W3014155057 citedByCount "15" @default.
- W3014155057 countsByYear W30141550572020 @default.
- W3014155057 countsByYear W30141550572021 @default.
- W3014155057 countsByYear W30141550572022 @default.
- W3014155057 countsByYear W30141550572023 @default.
- W3014155057 crossrefType "journal-article" @default.
- W3014155057 hasAuthorship W3014155057A5057205670 @default.
- W3014155057 hasBestOaLocation W30141550572 @default.
- W3014155057 hasConcept C105795698 @default.
- W3014155057 hasConcept C120665830 @default.
- W3014155057 hasConcept C121332964 @default.
- W3014155057 hasConcept C124101348 @default.
- W3014155057 hasConcept C126322002 @default.
- W3014155057 hasConcept C127413603 @default.
- W3014155057 hasConcept C144986985 @default.
- W3014155057 hasConcept C146978453 @default.
- W3014155057 hasConcept C149782125 @default.
- W3014155057 hasConcept C152588345 @default.
- W3014155057 hasConcept C16012445 @default.
- W3014155057 hasConcept C168743327 @default.
- W3014155057 hasConcept C192209626 @default.
- W3014155057 hasConcept C205649164 @default.
- W3014155057 hasConcept C2778755073 @default.
- W3014155057 hasConcept C33923547 @default.
- W3014155057 hasConcept C41008148 @default.
- W3014155057 hasConcept C53059260 @default.
- W3014155057 hasConcept C58640448 @default.
- W3014155057 hasConcept C71104824 @default.
- W3014155057 hasConcept C71924100 @default.
- W3014155057 hasConcept C95190672 @default.
- W3014155057 hasConceptScore W3014155057C105795698 @default.
- W3014155057 hasConceptScore W3014155057C120665830 @default.
- W3014155057 hasConceptScore W3014155057C121332964 @default.
- W3014155057 hasConceptScore W3014155057C124101348 @default.
- W3014155057 hasConceptScore W3014155057C126322002 @default.
- W3014155057 hasConceptScore W3014155057C127413603 @default.
- W3014155057 hasConceptScore W3014155057C144986985 @default.
- W3014155057 hasConceptScore W3014155057C146978453 @default.
- W3014155057 hasConceptScore W3014155057C149782125 @default.
- W3014155057 hasConceptScore W3014155057C152588345 @default.
- W3014155057 hasConceptScore W3014155057C16012445 @default.
- W3014155057 hasConceptScore W3014155057C168743327 @default.
- W3014155057 hasConceptScore W3014155057C192209626 @default.
- W3014155057 hasConceptScore W3014155057C205649164 @default.
- W3014155057 hasConceptScore W3014155057C2778755073 @default.
- W3014155057 hasConceptScore W3014155057C33923547 @default.
- W3014155057 hasConceptScore W3014155057C41008148 @default.