Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014165472> ?p ?o ?g. }
- W3014165472 abstract "Magnetic resonance imaging (MRI) offers the possibility to non-invasively map the brain's metabolic oxygen consumption (CMRO 2 ), which is essential for understanding and monitoring neural function in both health and disease. However, in depth study of oxygen metabolism with MRI has so far been hindered by the lack of robust methods. One MRI method of mapping CMRO 2 is based on the simultaneous acquisition of cerebral blood flow (CBF) and blood oxygen level dependent (BOLD) weighted images during respiratory modulation of both oxygen and carbon dioxide. Although this dual-calibrated methodology has shown promise in the research setting, current analysis methods are unstable in the presence of noise and/or are computationally demanding. In this paper, we present a machine learning implementation for the multi-parametric assessment of dual-calibrated fMRI data. The proposed method aims to address the issues of stability, accuracy, and computational overhead, removing significant barriers to the investigation of oxygen metabolism with MRI. The method utilizes a time-frequency transformation of the acquired perfusion and BOLD-weighted data, from which appropriate feature vectors are selected for training of machine learning regressors. The implemented machine learning methods are chosen for their robustness to noise and their ability to map complex non-linear relationships (such as those that exist between BOLD signal weighting and blood oxygenation). An extremely randomized trees (ET) regressor is used to estimate resting blood flow and a multi-layer perceptron (MLP) is used to estimate CMRO 2 and the oxygen extraction fraction (OEF). Synthetic data with additive noise are used to train the regressors, with data simulated to cover a wide range of physiologically plausible parameters. The performance of the implemented analysis method is compared to published methods both in simulation and with in-vivo data ( n = 30). The proposed method is demonstrated to significantly reduce computation time, error, and proportional bias in both CMRO 2 and OEF estimates. The introduction of the proposed analysis pipeline has the potential to not only increase the detectability of metabolic difference between groups of subjects, but may also allow for single subject examinations within a clinical context." @default.
- W3014165472 created "2020-04-10" @default.
- W3014165472 creator A5021814533 @default.
- W3014165472 creator A5050367507 @default.
- W3014165472 creator A5050941263 @default.
- W3014165472 creator A5057824637 @default.
- W3014165472 creator A5059929148 @default.
- W3014165472 creator A5084593174 @default.
- W3014165472 creator A5088676733 @default.
- W3014165472 date "2020-03-31" @default.
- W3014165472 modified "2023-10-15" @default.
- W3014165472 title "A Frequency-Domain Machine Learning Method for Dual-Calibrated fMRI Mapping of Oxygen Extraction Fraction (OEF) and Cerebral Metabolic Rate of Oxygen Consumption (CMRO2)" @default.
- W3014165472 cites W1520683695 @default.
- W3014165472 cites W1569516149 @default.
- W3014165472 cites W1967611225 @default.
- W3014165472 cites W1979750265 @default.
- W3014165472 cites W1993621244 @default.
- W3014165472 cites W2018376941 @default.
- W3014165472 cites W2027345658 @default.
- W3014165472 cites W2028477260 @default.
- W3014165472 cites W2028970278 @default.
- W3014165472 cites W2030649601 @default.
- W3014165472 cites W2032979674 @default.
- W3014165472 cites W2042963187 @default.
- W3014165472 cites W2045275857 @default.
- W3014165472 cites W2047229668 @default.
- W3014165472 cites W2048705910 @default.
- W3014165472 cites W2050112450 @default.
- W3014165472 cites W2056132907 @default.
- W3014165472 cites W2056195544 @default.
- W3014165472 cites W2059982399 @default.
- W3014165472 cites W2062272899 @default.
- W3014165472 cites W2067636175 @default.
- W3014165472 cites W2069040710 @default.
- W3014165472 cites W2071485416 @default.
- W3014165472 cites W2099802623 @default.
- W3014165472 cites W2101943454 @default.
- W3014165472 cites W2116641010 @default.
- W3014165472 cites W2156241772 @default.
- W3014165472 cites W2257488709 @default.
- W3014165472 cites W2328562082 @default.
- W3014165472 cites W2419529108 @default.
- W3014165472 cites W2470594653 @default.
- W3014165472 cites W2595731341 @default.
- W3014165472 cites W2615209167 @default.
- W3014165472 cites W2784201940 @default.
- W3014165472 cites W2793779127 @default.
- W3014165472 cites W2795224682 @default.
- W3014165472 cites W2892803055 @default.
- W3014165472 cites W2893043899 @default.
- W3014165472 cites W2911964244 @default.
- W3014165472 cites W2963041956 @default.
- W3014165472 cites W2964017153 @default.
- W3014165472 cites W2977883299 @default.
- W3014165472 cites W2997591727 @default.
- W3014165472 cites W4232336421 @default.
- W3014165472 doi "https://doi.org/10.3389/frai.2020.00012" @default.
- W3014165472 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8313422" @default.
- W3014165472 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34327328" @default.
- W3014165472 hasPublicationYear "2020" @default.
- W3014165472 type Work @default.
- W3014165472 sameAs 3014165472 @default.
- W3014165472 citedByCount "6" @default.
- W3014165472 countsByYear W30141654722021 @default.
- W3014165472 countsByYear W30141654722022 @default.
- W3014165472 countsByYear W30141654722023 @default.
- W3014165472 crossrefType "journal-article" @default.
- W3014165472 hasAuthorship W3014165472A5021814533 @default.
- W3014165472 hasAuthorship W3014165472A5050367507 @default.
- W3014165472 hasAuthorship W3014165472A5050941263 @default.
- W3014165472 hasAuthorship W3014165472A5057824637 @default.
- W3014165472 hasAuthorship W3014165472A5059929148 @default.
- W3014165472 hasAuthorship W3014165472A5084593174 @default.
- W3014165472 hasAuthorship W3014165472A5088676733 @default.
- W3014165472 hasBestOaLocation W30141654721 @default.
- W3014165472 hasConcept C119857082 @default.
- W3014165472 hasConcept C126838900 @default.
- W3014165472 hasConcept C153180895 @default.
- W3014165472 hasConcept C154945302 @default.
- W3014165472 hasConcept C157767197 @default.
- W3014165472 hasConcept C164705383 @default.
- W3014165472 hasConcept C2779226451 @default.
- W3014165472 hasConcept C2780238834 @default.
- W3014165472 hasConcept C28490314 @default.
- W3014165472 hasConcept C41008148 @default.
- W3014165472 hasConcept C71924100 @default.
- W3014165472 hasConceptScore W3014165472C119857082 @default.
- W3014165472 hasConceptScore W3014165472C126838900 @default.
- W3014165472 hasConceptScore W3014165472C153180895 @default.
- W3014165472 hasConceptScore W3014165472C154945302 @default.
- W3014165472 hasConceptScore W3014165472C157767197 @default.
- W3014165472 hasConceptScore W3014165472C164705383 @default.
- W3014165472 hasConceptScore W3014165472C2779226451 @default.
- W3014165472 hasConceptScore W3014165472C2780238834 @default.
- W3014165472 hasConceptScore W3014165472C28490314 @default.
- W3014165472 hasConceptScore W3014165472C41008148 @default.
- W3014165472 hasConceptScore W3014165472C71924100 @default.
- W3014165472 hasFunder F4320307874 @default.
- W3014165472 hasFunder F4320320005 @default.
- W3014165472 hasFunder F4320320086 @default.