Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014176075> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W3014176075 abstract "Mining data is a nontrivial procedure of finding information from a large volume of data. Such information can be helpful in settling on significant choices. Medical data show special features including noise coming about because of human just as methodical blunders, missing qualities and even meager conditions. The nature of data has huge ramifications for the nature of the mining results. Medical data classification is important to perform preprocessing steps so as to expel or at least lighten a portion of the issues related with medical data. Clustering is a descriptive-based data mining task. The clustering algorithm is also called as unsupervised learning algorithm that learns the unlabeled dataset and groups or clusters the instances based on their similarity and builds the clustering model. Clustering is same as classification in which data is grouped, but in this, groups are not predefined. In clustering, clusters are not predefined. Classification of different types of clustering is as follows: Hierarchical clustering, Partition clustering, Categorical clustering, Density based clustering and Grid based clustering. The main intension of the research is to classify the medical data with high accuracy value. In order to achieve promising results, a novel data classification methods have been designed that utilize a Improved Cluster Optimal Classifier (ICOC). The proposed method is compared with traditional methods and the results show that the proposed method performance is better and accurate." @default.
- W3014176075 created "2020-04-10" @default.
- W3014176075 creator A5003383672 @default.
- W3014176075 creator A5040516802 @default.
- W3014176075 creator A5043303175 @default.
- W3014176075 creator A5051462582 @default.
- W3014176075 date "2020-02-01" @default.
- W3014176075 modified "2023-10-14" @default.
- W3014176075 title "MACHINE LEARNING METHODOLOGY FOR MEDICAL DATA ANALYSIS FOR PREDICTION OF RISK" @default.
- W3014176075 doi "https://doi.org/10.31838/jcr.07.04.151" @default.
- W3014176075 hasPublicationYear "2020" @default.
- W3014176075 type Work @default.
- W3014176075 sameAs 3014176075 @default.
- W3014176075 citedByCount "0" @default.
- W3014176075 crossrefType "journal-article" @default.
- W3014176075 hasAuthorship W3014176075A5003383672 @default.
- W3014176075 hasAuthorship W3014176075A5040516802 @default.
- W3014176075 hasAuthorship W3014176075A5043303175 @default.
- W3014176075 hasAuthorship W3014176075A5051462582 @default.
- W3014176075 hasConcept C104047586 @default.
- W3014176075 hasConcept C119857082 @default.
- W3014176075 hasConcept C124101348 @default.
- W3014176075 hasConcept C153180895 @default.
- W3014176075 hasConcept C154945302 @default.
- W3014176075 hasConcept C17212007 @default.
- W3014176075 hasConcept C184509293 @default.
- W3014176075 hasConcept C186767784 @default.
- W3014176075 hasConcept C193143536 @default.
- W3014176075 hasConcept C33704608 @default.
- W3014176075 hasConcept C41008148 @default.
- W3014176075 hasConcept C73555534 @default.
- W3014176075 hasConcept C94641424 @default.
- W3014176075 hasConceptScore W3014176075C104047586 @default.
- W3014176075 hasConceptScore W3014176075C119857082 @default.
- W3014176075 hasConceptScore W3014176075C124101348 @default.
- W3014176075 hasConceptScore W3014176075C153180895 @default.
- W3014176075 hasConceptScore W3014176075C154945302 @default.
- W3014176075 hasConceptScore W3014176075C17212007 @default.
- W3014176075 hasConceptScore W3014176075C184509293 @default.
- W3014176075 hasConceptScore W3014176075C186767784 @default.
- W3014176075 hasConceptScore W3014176075C193143536 @default.
- W3014176075 hasConceptScore W3014176075C33704608 @default.
- W3014176075 hasConceptScore W3014176075C41008148 @default.
- W3014176075 hasConceptScore W3014176075C73555534 @default.
- W3014176075 hasConceptScore W3014176075C94641424 @default.
- W3014176075 hasIssue "04" @default.
- W3014176075 hasLocation W30141760751 @default.
- W3014176075 hasOpenAccess W3014176075 @default.
- W3014176075 hasPrimaryLocation W30141760751 @default.
- W3014176075 hasRelatedWork W10130694 @default.
- W3014176075 hasRelatedWork W10931660 @default.
- W3014176075 hasRelatedWork W11991885 @default.
- W3014176075 hasRelatedWork W12970924 @default.
- W3014176075 hasRelatedWork W13710472 @default.
- W3014176075 hasRelatedWork W4630997 @default.
- W3014176075 hasRelatedWork W6161656 @default.
- W3014176075 hasRelatedWork W7677535 @default.
- W3014176075 hasRelatedWork W8589957 @default.
- W3014176075 hasRelatedWork W8629692 @default.
- W3014176075 hasVolume "7" @default.
- W3014176075 isParatext "false" @default.
- W3014176075 isRetracted "false" @default.
- W3014176075 magId "3014176075" @default.
- W3014176075 workType "article" @default.