Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014201629> ?p ?o ?g. }
- W3014201629 abstract "Abstract Background Chronic obstructive pulmonary disease (COPD) is a major public health problem and cause of mortality worldwide. However, COPD in the early stage is usually not recognized and diagnosed. It is necessary to establish a risk model to predict COPD development. Methods A total of 441 COPD patients and 192 control subjects were recruited, and 101 single-nucleotide polymorphisms (SNPs) were determined using the MassArray assay. With 5 clinical features as well as SNPs, 6 predictive models were established and evaluated in the training set and test set by the confusion matrix AU-ROC, AU-PRC, sensitivity (recall), specificity, accuracy, F1 score, MCC, PPV (precision) and NPV. The selected features were ranked. Results Nine SNPs were significantly associated with COPD. Among them, 6 SNPs (rs1007052, OR = 1.671, P = 0.010; rs2910164, OR = 1.416, P < 0.037; rs473892, OR = 1.473, P < 0.044; rs161976, OR = 1.594, P < 0.044; rs159497, OR = 1.445, P < 0.045; and rs9296092, OR = 1.832, P < 0.045) were risk factors for COPD, while 3 SNPs (rs8192288, OR = 0.593, P < 0.015; rs20541, OR = 0.669, P < 0.018; and rs12922394, OR = 0.651, P < 0.022) were protective factors for COPD development. In the training set, KNN, LR, SVM, DT and XGboost obtained AU-ROC values above 0.82 and AU-PRC values above 0.92. Among these models, XGboost obtained the highest AU-ROC (0.94), AU-PRC (0.97), accuracy (0.91), precision (0.95), F1 score (0.94), MCC (0.77) and specificity (0.85), while MLP obtained the highest sensitivity (recall) (0.99) and NPV (0.87). In the validation set, KNN, LR and XGboost obtained AU-ROC and AU-PRC values above 0.80 and 0.85, respectively. KNN had the highest precision (0.82), both KNN and LR obtained the same highest accuracy (0.81), and KNN and LR had the same highest F1 score (0.86). Both DT and MLP obtained sensitivity (recall) and NPV values above 0.94 and 0.84, respectively. In the feature importance analyses, we identified that AQCI, age, and BMI had the greatest impact on the predictive abilities of the models, while SNPs, sex and smoking were less important. Conclusions The KNN, LR and XGboost models showed excellent overall predictive power, and the use of machine learning tools combining both clinical and SNP features was suitable for predicting the risk of COPD development." @default.
- W3014201629 created "2020-04-10" @default.
- W3014201629 creator A5001487780 @default.
- W3014201629 creator A5004313310 @default.
- W3014201629 creator A5011614088 @default.
- W3014201629 creator A5015480452 @default.
- W3014201629 creator A5016028341 @default.
- W3014201629 creator A5021948453 @default.
- W3014201629 creator A5026276013 @default.
- W3014201629 creator A5043764158 @default.
- W3014201629 creator A5055151897 @default.
- W3014201629 creator A5071882941 @default.
- W3014201629 creator A5075190316 @default.
- W3014201629 creator A5083228843 @default.
- W3014201629 creator A5086625638 @default.
- W3014201629 date "2020-03-31" @default.
- W3014201629 modified "2023-10-17" @default.
- W3014201629 title "Comparison and development of machine learning tools for the prediction of chronic obstructive pulmonary disease in the Chinese population" @default.
- W3014201629 cites W1892595029 @default.
- W3014201629 cites W1964170833 @default.
- W3014201629 cites W1965012204 @default.
- W3014201629 cites W1970493580 @default.
- W3014201629 cites W1978018398 @default.
- W3014201629 cites W1996249630 @default.
- W3014201629 cites W2013261130 @default.
- W3014201629 cites W2033686623 @default.
- W3014201629 cites W2038505293 @default.
- W3014201629 cites W2042505356 @default.
- W3014201629 cites W2044216218 @default.
- W3014201629 cites W2058792575 @default.
- W3014201629 cites W2073011236 @default.
- W3014201629 cites W2081835397 @default.
- W3014201629 cites W2088657035 @default.
- W3014201629 cites W2090262871 @default.
- W3014201629 cites W2094444020 @default.
- W3014201629 cites W2096764510 @default.
- W3014201629 cites W2097482510 @default.
- W3014201629 cites W2099676542 @default.
- W3014201629 cites W2100074859 @default.
- W3014201629 cites W2103445423 @default.
- W3014201629 cites W2108338542 @default.
- W3014201629 cites W2109580000 @default.
- W3014201629 cites W2116125235 @default.
- W3014201629 cites W2116141140 @default.
- W3014201629 cites W2124863921 @default.
- W3014201629 cites W2129538225 @default.
- W3014201629 cites W2131423215 @default.
- W3014201629 cites W2132226196 @default.
- W3014201629 cites W2136915396 @default.
- W3014201629 cites W2138347221 @default.
- W3014201629 cites W2140357849 @default.
- W3014201629 cites W2143874491 @default.
- W3014201629 cites W2147463069 @default.
- W3014201629 cites W2149458200 @default.
- W3014201629 cites W2153158159 @default.
- W3014201629 cites W2153838261 @default.
- W3014201629 cites W2154039449 @default.
- W3014201629 cites W2154453846 @default.
- W3014201629 cites W2161633633 @default.
- W3014201629 cites W2163267243 @default.
- W3014201629 cites W2171451717 @default.
- W3014201629 cites W2208800162 @default.
- W3014201629 cites W2253778845 @default.
- W3014201629 cites W2275354356 @default.
- W3014201629 cites W2296071166 @default.
- W3014201629 cites W2296224548 @default.
- W3014201629 cites W2316288872 @default.
- W3014201629 cites W2342547892 @default.
- W3014201629 cites W2343199950 @default.
- W3014201629 cites W2438212195 @default.
- W3014201629 cites W2527824850 @default.
- W3014201629 cites W2531469489 @default.
- W3014201629 cites W2558208069 @default.
- W3014201629 cites W2612452741 @default.
- W3014201629 cites W2614068855 @default.
- W3014201629 cites W2769043826 @default.
- W3014201629 cites W2781220280 @default.
- W3014201629 cites W2790454971 @default.
- W3014201629 cites W2795820839 @default.
- W3014201629 cites W2798095897 @default.
- W3014201629 cites W2885109827 @default.
- W3014201629 cites W2911462778 @default.
- W3014201629 cites W2925296862 @default.
- W3014201629 cites W2932988231 @default.
- W3014201629 cites W2945048168 @default.
- W3014201629 cites W2951078712 @default.
- W3014201629 cites W2952162556 @default.
- W3014201629 cites W2979726429 @default.
- W3014201629 cites W4211263216 @default.
- W3014201629 cites W4238312322 @default.
- W3014201629 cites W4254423821 @default.
- W3014201629 cites W2088583156 @default.
- W3014201629 doi "https://doi.org/10.1186/s12967-020-02312-0" @default.
- W3014201629 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7110698" @default.
- W3014201629 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32234053" @default.
- W3014201629 hasPublicationYear "2020" @default.
- W3014201629 type Work @default.
- W3014201629 sameAs 3014201629 @default.
- W3014201629 citedByCount "24" @default.
- W3014201629 countsByYear W30142016292020 @default.