Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014240881> ?p ?o ?g. }
- W3014240881 abstract "Abstract The widespread applications of high-throughput sequencing technology have produced a large number of publicly available gene expression datasets. However, due to the gene expression datasets have the characteristics of small sample size, high dimensionality and high noise, the application of biostatistics and machine learning methods to analyze gene expression data is a challenging task, such as the low reproducibility of important biomarkers in different studies. Meta-analysis is an effective approach to deal with these problems, but the current methods have some limitations. In this paper, we propose the meta-analysis based on three nonconvex regularization methods, which are L 1/2 regularization (meta-Half), Minimax Concave Penalty regularization (meta-MCP) and Smoothly Clipped Absolute Deviation regularization (meta-SCAD). The three nonconvex regularization methods are effective approaches for variable selection developed in recent years. Through the hierarchical decomposition of coefficients, our methods not only maintain the flexibility of variable selection and improve the efficiency of selecting important biomarkers, but also summarize and synthesize scientific evidence from multiple studies to consider the relationship between different datasets. We give the efficient algorithms and the theoretical property for our methods. Furthermore, we apply our methods to the simulation data and three publicly available lung cancer gene expression datasets, and compare the performance with state-of-the-art methods. Our methods have good performance in simulation studies, and the analysis results on the three publicly available lung cancer gene expression datasets are clinically meaningful. Our methods can also be extended to other areas where datasets are heterogeneous." @default.
- W3014240881 created "2020-04-10" @default.
- W3014240881 creator A5018295220 @default.
- W3014240881 creator A5044193160 @default.
- W3014240881 creator A5046551045 @default.
- W3014240881 creator A5061023477 @default.
- W3014240881 creator A5078915518 @default.
- W3014240881 creator A5083949767 @default.
- W3014240881 creator A5085127108 @default.
- W3014240881 date "2020-04-01" @default.
- W3014240881 modified "2023-10-11" @default.
- W3014240881 title "Meta-Analysis Based on Nonconvex Regularization" @default.
- W3014240881 cites W1522879439 @default.
- W3014240881 cites W1528493411 @default.
- W3014240881 cites W1589848011 @default.
- W3014240881 cites W1826153834 @default.
- W3014240881 cites W1908186693 @default.
- W3014240881 cites W1965125844 @default.
- W3014240881 cites W1968480053 @default.
- W3014240881 cites W1985847658 @default.
- W3014240881 cites W1988351744 @default.
- W3014240881 cites W1996583386 @default.
- W3014240881 cites W1998712640 @default.
- W3014240881 cites W2008458159 @default.
- W3014240881 cites W2010168796 @default.
- W3014240881 cites W2015934446 @default.
- W3014240881 cites W2020863153 @default.
- W3014240881 cites W2021505842 @default.
- W3014240881 cites W2022815972 @default.
- W3014240881 cites W2024311320 @default.
- W3014240881 cites W2026667439 @default.
- W3014240881 cites W2037875759 @default.
- W3014240881 cites W2041891835 @default.
- W3014240881 cites W2044545697 @default.
- W3014240881 cites W2045119066 @default.
- W3014240881 cites W2046759180 @default.
- W3014240881 cites W2054596996 @default.
- W3014240881 cites W2058957380 @default.
- W3014240881 cites W2079872885 @default.
- W3014240881 cites W2086493366 @default.
- W3014240881 cites W2089000384 @default.
- W3014240881 cites W2106161928 @default.
- W3014240881 cites W2114479856 @default.
- W3014240881 cites W2114843025 @default.
- W3014240881 cites W2117289962 @default.
- W3014240881 cites W2118258530 @default.
- W3014240881 cites W2118423420 @default.
- W3014240881 cites W2120160881 @default.
- W3014240881 cites W2122825543 @default.
- W3014240881 cites W2138019504 @default.
- W3014240881 cites W2148139839 @default.
- W3014240881 cites W2149441684 @default.
- W3014240881 cites W2152155643 @default.
- W3014240881 cites W2154981570 @default.
- W3014240881 cites W2160697532 @default.
- W3014240881 cites W2169935868 @default.
- W3014240881 cites W2170989872 @default.
- W3014240881 cites W2505703352 @default.
- W3014240881 cites W2583025663 @default.
- W3014240881 cites W2604481715 @default.
- W3014240881 cites W2605217922 @default.
- W3014240881 cites W2623734663 @default.
- W3014240881 cites W2735991900 @default.
- W3014240881 cites W2762794689 @default.
- W3014240881 cites W2765675581 @default.
- W3014240881 cites W2772732314 @default.
- W3014240881 cites W2888333721 @default.
- W3014240881 cites W2907339301 @default.
- W3014240881 cites W2908937891 @default.
- W3014240881 cites W2914482044 @default.
- W3014240881 cites W2949417153 @default.
- W3014240881 cites W2964094205 @default.
- W3014240881 cites W2980499623 @default.
- W3014240881 cites W3106108064 @default.
- W3014240881 cites W317954863 @default.
- W3014240881 doi "https://doi.org/10.1038/s41598-020-62473-2" @default.
- W3014240881 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7113298" @default.
- W3014240881 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32238826" @default.
- W3014240881 hasPublicationYear "2020" @default.
- W3014240881 type Work @default.
- W3014240881 sameAs 3014240881 @default.
- W3014240881 citedByCount "7" @default.
- W3014240881 countsByYear W30142408812020 @default.
- W3014240881 countsByYear W30142408812021 @default.
- W3014240881 countsByYear W30142408812022 @default.
- W3014240881 countsByYear W30142408812023 @default.
- W3014240881 crossrefType "journal-article" @default.
- W3014240881 hasAuthorship W3014240881A5018295220 @default.
- W3014240881 hasAuthorship W3014240881A5044193160 @default.
- W3014240881 hasAuthorship W3014240881A5046551045 @default.
- W3014240881 hasAuthorship W3014240881A5061023477 @default.
- W3014240881 hasAuthorship W3014240881A5078915518 @default.
- W3014240881 hasAuthorship W3014240881A5083949767 @default.
- W3014240881 hasAuthorship W3014240881A5085127108 @default.
- W3014240881 hasBestOaLocation W30142408811 @default.
- W3014240881 hasConcept C105795698 @default.
- W3014240881 hasConcept C111030470 @default.
- W3014240881 hasConcept C119857082 @default.
- W3014240881 hasConcept C124101348 @default.
- W3014240881 hasConcept C126255220 @default.