Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014299522> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3014299522 endingPage "1267" @default.
- W3014299522 startingPage "1252" @default.
- W3014299522 abstract "No AccessFull-Length PapersData and Design Models for Civil Turbopropeller AircraftBenoît G. Marinus and Lucile QuodbachBenoît G. MarinusRoyal Military Academy, 1000 Brussels, Belgium*Associate Professor, Department of Mechanical Engineering. Senior Member AIAA.Search for more papers by this author and Lucile QuodbachRoyal Military Academy, 1000 Brussels, Belgium†Department of Mechanical Engineering.Search for more papers by this authorPublished Online:2 Apr 2020https://doi.org/10.2514/1.C035271SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Ryerson M. and Hansen M., “The Potential of Turboprops for Reducing Aviation Fuel Consumption,” Transportation Research, Part D: Transport and Environment, Vol. 15, No. 6, 2010, pp. 305–314. https://doi.org/10.1016/j.trd.2010.03.003 CrossrefGoogle Scholar[2] Davendralingam N. and Crossley W., “Robust Approach for Concurrent Aircraft Design and Airline Network Design,” Journal of Aircraft, Vol. 51, No. 6, 2014, pp. 1773–1783. https://doi.org/10.2514/1.C032442 LinkGoogle Scholar[3] Roskam J., Airplane Design—Part 1: Preliminary Sizing of Airplanes, Airplane Design, DARcorporation, Lawrence, KS, 2002. Google Scholar[4] Howe D., Aircraft Conceptual Design Synthesis, Professional Engineering Publ., London, 2000. CrossrefGoogle Scholar[5] Kundu A., Aircraft Design, Cambridge Univ. Press, Cambridge, England, U.K., 2010. CrossrefGoogle Scholar[6] Ardema M. D., Chambers M. C., Patron A. P., Hahn A. S., Miura H. and Moore M. D., “Analytical Fuselage and Wing Weight Estimation of Transport Aircraft,” NASA TM-110392, May 1996. CrossrefGoogle Scholar[7] Vouvakos X., Kallinderis Y. and Menounou P., “Preliminary Design Correlations for Twin Civil Turboprops and Comparison with Jet Aircraft,” Aircraft Engineering and Aerospace Technology, Vol. 82, No. 2, 2010, pp. 126–133. https://doi.org/10.1108/00022661011053427 CrossrefGoogle Scholar[8] Ibrahim K., “Selecting Principal Parameters of Baseline Design Configuration for Twin Turboprop Transport Aircraft,” 22nd Applied Aerodynamics Conference and Exhibit, AIAA Paper 2004-5069, 2004. https://doi.org/10.2514/6.2004-5069 LinkGoogle Scholar[9] Filippone A., “Data and Performances of Selected Aircraft and Rotorcraft,” Progress in Aerospace Sciences, Vol. 36, No. 8, 2000, pp. 629–654. https://doi.org/10.1016/S0376-0421(00)00011-7 CrossrefGoogle Scholar[10] Roskam J. and Lan C.-T. E., Airplane Aerodynamics and Performance, DARcorporation, Lawrence, KS, 1997. Google Scholar[11] Raymer D. P., Aircraft Design: A Conceptual Approach, AIAA, Reston, VA, 2006. https://doi.org/10.2514/4.869112 Google Scholar[12] Obert E. and Slingerland R., Aerodynamic Design of Transport Aircraft, IOS Press BV, Amsterdam, The Netherlands, 2009. Google Scholar[13] Schaufele R. D., The Elements of Aircraft Preliminary Design, Aries Publications, Santa Ana, CA, 2000. Google Scholar[14] Torenbeek E., Advanced Aircraft Design: Conceptual Design, Technology and Optimization of Subsonic Civil Airplanes, Wiley, New Delhi, India, 2013. https://doi.org/10.1002/9781118568101 CrossrefGoogle Scholar[15] Torenbeek E., Synthesis of Subsonic Airplane Design, Delft Univ. Press–Kluwer Academic, Delft, The Netherlands, 1982. CrossrefGoogle Scholar[16] Fielding J. P., Introduction to Aircraft Design, Cambridge Univ. Press, Cambridge, England, U.K., 1999. https://doi.org/10.1017/CBO9780511808906 CrossrefGoogle Scholar[17] Tyan M., Nguyen N., Kim S. and Lee J.-W., “Comprehensive Preliminary Sizing/Resizing Method for a Fixed Wing—VTOL Electric UAV,” Aerospace Science and Technology, Vol. 71, Dec. 2017, pp. 30–41. https://doi.org/10.1016/j.ast.2017.09.008 CrossrefGoogle Scholar[18] Bravo-Mosquera P., Cerón-Muñoz H., Díaz-Vázquez G. and Martini Catalano F., “Conceptual Design and CFD Analysis of a New Prototype of Agricultural Aircraft,” Aerospace Science and Technology, Vol. 80, Sept. 2018, pp. 156–176. https://doi.org/10.1016/j.ast.2018.07.014 CrossrefGoogle Scholar[19] Liu T., Oyama A. and Fujii K., “Scaling Analysis of Propeller-Driven Aircraft for Mars Exploration,” Journal of Aircraft, Vol. 50, No. 5, 2013, pp. 1593–1604. https://doi.org/10.2514/1.C032086 LinkGoogle Scholar[20] Marinus B. and Poppe J., “Data and Design Models for Military Turbo-Propeller Aircraft,” Aerospace Science and Technology, Vol. 41, Feb. 2015, pp. 63–80. https://doi.org/10.1016/j.ast.2014.12.009 CrossrefGoogle Scholar[21] Neufeld D., Chung J. and Behdinian K., “Aircraft Conceptual Design Optimization Considering Fidelity Uncertainties,” Journal of Aircraft, Vol. 48, No. 5, 2011, pp. 1602–1612. https://doi.org/10.2514/1.C031312 LinkGoogle Scholar[22] “Engineering Sciences Data Unit (ESDU) [online database],” IHS ESDU, London, U.K., www.esdu.com [retrieved 30 March 2018]. Google Scholar[23] Nicolosi F., Vecchia P. D. and Corcione S., “Design and Aerodynamic Analysis of a Twin-Engine Commuter Aircraft,” Aerospace Science and Technology, Vol. 40, Jan. 2015, pp. 1–16. https://doi.org/10.1016/j.ast.2014.10.008 CrossrefGoogle Scholar[24] Nicolosi F., Marco A. D., Attanasio L. and Vecchia P. D., “Development of a Java-Based Framework for Aircraft Preliminary Design and Optimization,” Journal of Aerospace Information Systems, Vol. 13, No. 6, 2016, pp. 234–242. https://doi.org/10.2514/1.I010404 LinkGoogle Scholar[25] Roskam J., Airplane Design—Part 2: Preliminary Configuration Design and Integration of the Propulsion System, Airplane Design, DARcorporation, Lawrence, KS, 2002. Google Scholar[26] Jackson P. (ed.), Jane’s All the Worlds Aircraft, Jane’s Information Group, Surrey, England, U.K., 2013–2014. Google Scholar[27] “Civil Aviation Statistics—ICAO Classification and Definition: Available Capacity and Average Passenger Mass,” International Civil Aviation Organization Working Paper STA/10-WP/5, Montreal, Nov. 2009. Google Scholar[28] Berdowski Z., van den Broek-Serlé F., Jetten J., Kawabata Y., Schoemaker J. and Versteegh R., “Survey on Standard Weights of Passengers and Baggage,” Panteia/NEA TR R20090095, Zoetermeer, The Netherlands, 2009. Google Scholar[29] Roskam J., “Rapid Sizing Method for Airplanes,” Journal of Aircraft, Vol. 23, No. 7, 1986, pp. 554–560. https://doi.org/10.2514/3.45343 LinkGoogle Scholar[30] Marinus B. G. and Maison J., “Fuel Weight Estimates of Military Turbo-Propeller Transport Aircraft,” Aerospace Science and Technology, Vol. 55, Aug. 2016, pp. 458–464. https://doi.org/10.1016/j.ast.2016.06.019 CrossrefGoogle Scholar[31] Riboldi C. E., “An Optimal Approach to the Preliminary Design of Small Hybrid-Electric Aircraft,” Aerospace Science and Technology, Vol. 81, Aug. 2018, pp. 14–31. https://doi.org/10.1016/j.ast.2018.07.042 CrossrefGoogle Scholar[32] Kenway G. K. W. and Martins J. R. R. A., “Multipoint High-Fidelity Aerostructural Optimization of a Transport Aircraft Configuration,” Journal of Aircraft, Vol. 51, No. 1, 2014, pp. 144–160. https://doi.org/10.2514/1.C032150 LinkGoogle Scholar[33] Rakshith B. R., Deshpande S. M., Narasimha R. and Praveen C., “Optimal Low-Drag Wing Planforms for Tractor-Configuration Propeller-Driven Aircraft,” Journal of Aircraft, Vol. 52, No. 6, 2015, pp. 1791–1801. https://doi.org/10.2514/1.C032997 LinkGoogle Scholar[34] Ghenaiet A. and Boulekraa T., “Minimum Power Requirement for a Propeller-Driven Aircraft and Optimum Cycle Parameters of Turboprop Engines,” Journal of Aerospace Engineering, Vol. 224, No. 5, 2009, pp. 625–636. https://doi.org/10.1243/09544100JAERO472 Google Scholar[35] Alba C., Elham A., German B. and Veldhuis L., “A Surrogate-Based Multi-Disciplinary Design Optimization Framework Modeling Wing-Propeller Interaction,” Aerospace Science and Technology, Vol. 78, July 2018, pp. 721–733. https://doi.org/10.1016/j.ast.2018.05.002 CrossrefGoogle Scholar[36] Nangia R., Zeune C. and Blake W., “Operating Efficiency of Military Transports (Jets & Turbo-Props) & Comparisons with Civil Aircraft,” 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA Paper 2010-0848, 2010. https://doi.org/10.2514/6.2010-848 LinkGoogle Scholar[37] Nangia R. K., Blake W. and Zeune C., “Relating & Comparing Operating Efficiencies of Civil Aircraft & Military Transports (Jets & Turbo-Props),” Proceedings of the 27th Congress of the International Council of the Aeronautical Sciences, 2010, ICAS 2010, Vol. 1, Nice, France, 2010, pp. 244–263, 2010. Google Scholar[38] Abbas A., de Vicenteb J. and Valerob E., “Aerodynamic Technologies to Improve Aircraft Performance,” Aerospace Science and Technology, Vol. 28, No. 1, 2013, pp. 100–132. https://doi.org/10.1016/j.ast.2012.10.008 CrossrefGoogle Scholar[39] De Young J. and Harper C., “Theoretical Symmetric Span Loading at Subsonic Speeds for Wings Having Arbitrary Plan Form,” NACA TR-921, 1948. Google Scholar[40] Lawson N., Jacques H., Gautrey J., Cooke A., Holt J. and Garry K., “Jetstream 31 National Flying Laboratory: Lift and Drag Measurement and Modelling,” Aerospace Science and Technology, Vol. 60, Jan. 2017, pp. 84–95. https://doi.org/10.1016/j.ast.2016.11.001 CrossrefGoogle Scholar[41] Ciliberti D., Vecchia P. D., Nicolosi F. and Marco A. D., “Aircraft Directional Stability and Vertical Tail Design: A Review of Semi-Empirical Methods,” Progress in Aerospace Sciences, Vol. 95, Suppl. C, Nov. 2017, pp. 140–172. https://doi.org/10.1016/j.paerosci.2017.11.001 CrossrefGoogle Scholar[42] Murray H., “Wind-Tunnel Investigation of End-Plate Effects of Horizontal Tails on a Vertical Tail Compared with Available Theory,” NACA TN-1050, 1946. Google Scholar[43] Giannakakis P., Goulos I., Laskaridis P., Pilidis P. and Kalfas A. I., “Novel Propeller Map Scaling Method,” Journal of Propulsion and Power, Vol. 32, No. 6, 2016, pp. 1325–1332. https://doi.org/10.2514/1.B35894 LinkGoogle Scholar[44] Roskam J., Airplane Design—Part 7: Determination of Stability, Control and Performance Characteristics: FAR and Military Requirements, Airplane Design, DARcorporation, Lawrence, KS, 2002. Google Scholar[45] Bakunowicz J., “Single Engine Turboprop Aeroplane Class in Small Air Transport,” Aircraft Engineering and Aerospace Technology, Vol. 90, No. 7, 2018, pp. 1033–1041. https://doi.org/10.1108/AEAT-01-2017-0009 CrossrefGoogle Scholar[46] Saravanamuttoo H., “Modern Turboprop Engines,” Progress in Aerospace Sciences, Vol. 24, No. 3, 1987, pp. 225–248. https://doi.org/10.1016/0376-0421(87)90008-X CrossrefGoogle Scholar[47] Glauert H., “An Aerodynamic Theory of the Airscrew,” Aeronautical Research Committee R&M 786, Aeronautical Research Committee, Great Britain, 1922. Google Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byDesign and aerodynamic evaluation of a medium short takeoff and landing tactical transport aircraft3 June 2021 | Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 236, No. 5Technical Advances in Aviation Electrification: Enhancing Strategic R&D Investment Analysis through Simulation Decomposition31 December 2021 | Sustainability, Vol. 14, No. 1 What's Popular Volume 57, Number 6November 2020 CrossmarkInformationCopyright © 2020 by B. G. Marinus. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3868 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAircraft Components and StructureAircraft Conceptual DesignAircraft DesignAircraft OperationsAircraft Operations and TechnologyAircraft Stability and ControlAircraft StabilizerAircraft Wing DesignAircraftsTakeoff and LandingWing ConfigurationsWing Planforms KeywordsPropeller AircraftMaximum Takeoff WeightAircraft ConfigurationsHigh Aspect RatioAerodynamic PropertiesUnswept WingsPower Specific Fuel ConsumptionWing GeometryMean Aerodynamic ChordFuel Mass FractionAcknowledgmentThe authors wish to acknowledge the scientific and technological research initiative of the Belgian Defense for its partial funding of the present study under grant MSP-16/07.PDF Received8 October 2018Accepted7 February 2020Published online2 April 2020" @default.
- W3014299522 created "2020-04-10" @default.
- W3014299522 creator A5016263600 @default.
- W3014299522 creator A5062711784 @default.
- W3014299522 date "2020-11-01" @default.
- W3014299522 modified "2023-09-27" @default.
- W3014299522 title "Data and Design Models for Civil Turbopropeller Aircraft" @default.
- W3014299522 cites W130246569 @default.
- W3014299522 cites W1589496167 @default.
- W3014299522 cites W1966607681 @default.
- W3014299522 cites W1974320357 @default.
- W3014299522 cites W1979010918 @default.
- W3014299522 cites W1989710561 @default.
- W3014299522 cites W1993811239 @default.
- W3014299522 cites W2028543761 @default.
- W3014299522 cites W2029135908 @default.
- W3014299522 cites W2049574257 @default.
- W3014299522 cites W2050179435 @default.
- W3014299522 cites W2073819788 @default.
- W3014299522 cites W2089625573 @default.
- W3014299522 cites W2137078032 @default.
- W3014299522 cites W2142770286 @default.
- W3014299522 cites W2158168229 @default.
- W3014299522 cites W2315502997 @default.
- W3014299522 cites W2419945314 @default.
- W3014299522 cites W2466289741 @default.
- W3014299522 cites W2474886629 @default.
- W3014299522 cites W2501474454 @default.
- W3014299522 cites W2555635681 @default.
- W3014299522 cites W2602158971 @default.
- W3014299522 cites W2754770802 @default.
- W3014299522 cites W2770136164 @default.
- W3014299522 cites W2807129307 @default.
- W3014299522 cites W2883767074 @default.
- W3014299522 cites W2886928964 @default.
- W3014299522 cites W4214480252 @default.
- W3014299522 cites W4230875679 @default.
- W3014299522 cites W4300957702 @default.
- W3014299522 doi "https://doi.org/10.2514/1.c035271" @default.
- W3014299522 hasPublicationYear "2020" @default.
- W3014299522 type Work @default.
- W3014299522 sameAs 3014299522 @default.
- W3014299522 citedByCount "2" @default.
- W3014299522 countsByYear W30142995222021 @default.
- W3014299522 crossrefType "journal-article" @default.
- W3014299522 hasAuthorship W3014299522A5016263600 @default.
- W3014299522 hasAuthorship W3014299522A5062711784 @default.
- W3014299522 hasConcept C127413603 @default.
- W3014299522 hasConcept C146978453 @default.
- W3014299522 hasConcept C178802073 @default.
- W3014299522 hasConcept C41008148 @default.
- W3014299522 hasConceptScore W3014299522C127413603 @default.
- W3014299522 hasConceptScore W3014299522C146978453 @default.
- W3014299522 hasConceptScore W3014299522C178802073 @default.
- W3014299522 hasConceptScore W3014299522C41008148 @default.
- W3014299522 hasIssue "6" @default.
- W3014299522 hasLocation W30142995221 @default.
- W3014299522 hasOpenAccess W3014299522 @default.
- W3014299522 hasPrimaryLocation W30142995221 @default.
- W3014299522 hasRelatedWork W1440918713 @default.
- W3014299522 hasRelatedWork W2089134126 @default.
- W3014299522 hasRelatedWork W2114213204 @default.
- W3014299522 hasRelatedWork W2805349488 @default.
- W3014299522 hasRelatedWork W2887130920 @default.
- W3014299522 hasRelatedWork W2899084033 @default.
- W3014299522 hasRelatedWork W2990912121 @default.
- W3014299522 hasRelatedWork W4232828791 @default.
- W3014299522 hasRelatedWork W4252062074 @default.
- W3014299522 hasRelatedWork W804007918 @default.
- W3014299522 hasVolume "57" @default.
- W3014299522 isParatext "false" @default.
- W3014299522 isRetracted "false" @default.
- W3014299522 magId "3014299522" @default.
- W3014299522 workType "article" @default.