Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014345041> ?p ?o ?g. }
- W3014345041 abstract "Estimation of large sparse covariance matrices is of great importance for statistical analysis, especially in the high-dimensional settings. The traditional approach such as the sample covariance matrix performs poorly due to the high dimensionality. The modified Cholesky decomposition (MCD) is a commonly used method for sparse covariance matrix estimation. However, the MCD method relies on the order of variables, which is often not available or cannot be pre-determined in practice. In this work, we solve this order issue by obtaining a set of covariance matrix estimates under different orders of variables used in the MCD. Then we consider an ensemble estimator as the center of such a set of covariance matrix estimates with respect to the Frobenius norm. The proposed method not only ensures the estimator to be positive definite, but also can capture the underlying sparse structure of the covariance matrix. Under some weak regularity conditions, we establish both algorithmic convergence and asymptotical convergence of the proposed method. The merits of the proposed method are illustrated through simulation studies and one real data example." @default.
- W3014345041 created "2020-04-10" @default.
- W3014345041 creator A5003650269 @default.
- W3014345041 creator A5003817085 @default.
- W3014345041 date "2017-12-31" @default.
- W3014345041 modified "2023-09-27" @default.
- W3014345041 title "On Variable Ordination of Modified Cholesky Decomposition for Sparse Covariance Matrix Estimation" @default.
- W3014345041 cites W100063776 @default.
- W3014345041 cites W1520752838 @default.
- W3014345041 cites W1959730594 @default.
- W3014345041 cites W1995436190 @default.
- W3014345041 cites W2008681993 @default.
- W3014345041 cites W2016538497 @default.
- W3014345041 cites W2020012304 @default.
- W3014345041 cites W2020370559 @default.
- W3014345041 cites W2039284087 @default.
- W3014345041 cites W2040373108 @default.
- W3014345041 cites W2052386156 @default.
- W3014345041 cites W2057535756 @default.
- W3014345041 cites W2062125287 @default.
- W3014345041 cites W2067567045 @default.
- W3014345041 cites W2070330801 @default.
- W3014345041 cites W2071346966 @default.
- W3014345041 cites W2074213722 @default.
- W3014345041 cites W2078038009 @default.
- W3014345041 cites W2080610970 @default.
- W3014345041 cites W2081746825 @default.
- W3014345041 cites W2101631795 @default.
- W3014345041 cites W2110711209 @default.
- W3014345041 cites W2113968881 @default.
- W3014345041 cites W2129560785 @default.
- W3014345041 cites W2132555912 @default.
- W3014345041 cites W2134068681 @default.
- W3014345041 cites W2135046866 @default.
- W3014345041 cites W2145143018 @default.
- W3014345041 cites W2146051689 @default.
- W3014345041 cites W2160306985 @default.
- W3014345041 cites W216325278 @default.
- W3014345041 cites W2163707651 @default.
- W3014345041 cites W2164278908 @default.
- W3014345041 cites W2170866857 @default.
- W3014345041 cites W2188692957 @default.
- W3014345041 cites W2594618066 @default.
- W3014345041 cites W2610862920 @default.
- W3014345041 cites W2765554123 @default.
- W3014345041 cites W2798766386 @default.
- W3014345041 cites W2985086210 @default.
- W3014345041 cites W2993651713 @default.
- W3014345041 cites W3098365576 @default.
- W3014345041 cites W3098880893 @default.
- W3014345041 cites W3099609308 @default.
- W3014345041 cites W3103917751 @default.
- W3014345041 cites W3106319742 @default.
- W3014345041 cites W3123211304 @default.
- W3014345041 doi "https://doi.org/10.48550/arxiv.1801.00380" @default.
- W3014345041 hasPublicationYear "2017" @default.
- W3014345041 type Work @default.
- W3014345041 sameAs 3014345041 @default.
- W3014345041 citedByCount "0" @default.
- W3014345041 crossrefType "posted-content" @default.
- W3014345041 hasAuthorship W3014345041A5003650269 @default.
- W3014345041 hasAuthorship W3014345041A5003817085 @default.
- W3014345041 hasBestOaLocation W30143450411 @default.
- W3014345041 hasConcept C105795698 @default.
- W3014345041 hasConcept C106487976 @default.
- W3014345041 hasConcept C111030470 @default.
- W3014345041 hasConcept C11413529 @default.
- W3014345041 hasConcept C121332964 @default.
- W3014345041 hasConcept C126255220 @default.
- W3014345041 hasConcept C137250428 @default.
- W3014345041 hasConcept C158693339 @default.
- W3014345041 hasConcept C159985019 @default.
- W3014345041 hasConcept C178650346 @default.
- W3014345041 hasConcept C180877172 @default.
- W3014345041 hasConcept C185142706 @default.
- W3014345041 hasConcept C185429906 @default.
- W3014345041 hasConcept C192562407 @default.
- W3014345041 hasConcept C28826006 @default.
- W3014345041 hasConcept C33923547 @default.
- W3014345041 hasConcept C34727166 @default.
- W3014345041 hasConcept C44363057 @default.
- W3014345041 hasConcept C46085209 @default.
- W3014345041 hasConcept C62520636 @default.
- W3014345041 hasConcept C83042196 @default.
- W3014345041 hasConceptScore W3014345041C105795698 @default.
- W3014345041 hasConceptScore W3014345041C106487976 @default.
- W3014345041 hasConceptScore W3014345041C111030470 @default.
- W3014345041 hasConceptScore W3014345041C11413529 @default.
- W3014345041 hasConceptScore W3014345041C121332964 @default.
- W3014345041 hasConceptScore W3014345041C126255220 @default.
- W3014345041 hasConceptScore W3014345041C137250428 @default.
- W3014345041 hasConceptScore W3014345041C158693339 @default.
- W3014345041 hasConceptScore W3014345041C159985019 @default.
- W3014345041 hasConceptScore W3014345041C178650346 @default.
- W3014345041 hasConceptScore W3014345041C180877172 @default.
- W3014345041 hasConceptScore W3014345041C185142706 @default.
- W3014345041 hasConceptScore W3014345041C185429906 @default.
- W3014345041 hasConceptScore W3014345041C192562407 @default.
- W3014345041 hasConceptScore W3014345041C28826006 @default.
- W3014345041 hasConceptScore W3014345041C33923547 @default.