Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014429891> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3014429891 endingPage "366" @default.
- W3014429891 startingPage "357" @default.
- W3014429891 abstract "Objective Body composition comprises prognostic information in patients with various malignancies and can be opportunistically determined from routine computed tomography (CT) scans. However, accurate assessment of patients with alterations, for example, due to ascites or anasarca, and accurate identification of intermuscular fat remain challenging. In this study, we aimed to develop a fully automated and highly accurate segmentation tool for connective tissue compartments from abdominal CT scans using the open-source Convolutional Neural Network (CNN) DeepMedic. Materials and Methods In this retrospective study, a CNN was developed using data of 1143 consecutive patients undergoing either preinterventional CT for transcatheter aortic valve implantation (TAVI) (82%) or diagnostic CT for liver cirrhosis with portosystemic shunting (PTSS) (18%). All analyses were performed on single-slice images at the L3/L4 level. The data were subdivided into subsets of training (70%), validation (15%), and test data (15%), balanced for TAVI and PTSS patients. To demonstrate the generalizability of the applied method with respect to nonspecific clinical routine data, the model with the highest performance in TAVI and PTSS patients was further tested on 100 randomly selected patients who underwent CT for routine diagnostic purposes at a hospital of maximum care, including critically ill patients. The applicability of the method to native CT examinations was additionally tested on 50 patients. Results Compared with the ground truth of the test data, the presented method achieved highly accurate segmentation results (subcutaneous adipose tissue [SAT], Dice score [DSC]: 0.98 ± 0.01; visceral adipose tissue [VAT], DSC: 0.96 ± 0.04; skeletal muscles [SM], DSC: 0.95 ± 0.02) and showed excellent generalizability on the routine CT diagnostic patients (SAT, DSC: 0.97 ± 0.04; VAT, DSC: 0.95 ± 0.05; SM, DSC: 0.95 ± 0.04) and also on native CT scans (SAT, DSC: 0.99 ± 0.01; VAT, DSC: 0.97 ± 0.03; SM, DSC: 0.97 ± 0.02). Conclusions Fully automated determination of body composition based on CT can be performed with excellent results using the open-source CNN DeepMedic. The trained model is made usable for research by a deployable and sharable application." @default.
- W3014429891 created "2020-04-10" @default.
- W3014429891 creator A5013965127 @default.
- W3014429891 creator A5025144461 @default.
- W3014429891 creator A5040206867 @default.
- W3014429891 creator A5050767229 @default.
- W3014429891 creator A5058675792 @default.
- W3014429891 creator A5061787483 @default.
- W3014429891 creator A5077390693 @default.
- W3014429891 creator A5084718211 @default.
- W3014429891 date "2020-06-01" @default.
- W3014429891 modified "2023-10-17" @default.
- W3014429891 title "Fully Automated Segmentation of Connective Tissue Compartments for CT-Based Body Composition Analysis" @default.
- W3014429891 cites W1641498739 @default.
- W3014429891 cites W1967999993 @default.
- W3014429891 cites W1982322333 @default.
- W3014429891 cites W1987869189 @default.
- W3014429891 cites W1989400130 @default.
- W3014429891 cites W2083927153 @default.
- W3014429891 cites W2112796928 @default.
- W3014429891 cites W2118558111 @default.
- W3014429891 cites W2127424726 @default.
- W3014429891 cites W2160921359 @default.
- W3014429891 cites W2165839911 @default.
- W3014429891 cites W2209995731 @default.
- W3014429891 cites W2301358467 @default.
- W3014429891 cites W2484736472 @default.
- W3014429891 cites W2603403091 @default.
- W3014429891 cites W2767236661 @default.
- W3014429891 cites W2770877241 @default.
- W3014429891 cites W2789900000 @default.
- W3014429891 cites W2804287775 @default.
- W3014429891 cites W2884555844 @default.
- W3014429891 cites W2904484164 @default.
- W3014429891 cites W2911937546 @default.
- W3014429891 cites W2912585595 @default.
- W3014429891 cites W2913714510 @default.
- W3014429891 cites W2974549447 @default.
- W3014429891 cites W4244212661 @default.
- W3014429891 cites W646091635 @default.
- W3014429891 doi "https://doi.org/10.1097/rli.0000000000000647" @default.
- W3014429891 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32369318" @default.
- W3014429891 hasPublicationYear "2020" @default.
- W3014429891 type Work @default.
- W3014429891 sameAs 3014429891 @default.
- W3014429891 citedByCount "31" @default.
- W3014429891 countsByYear W30144298912020 @default.
- W3014429891 countsByYear W30144298912021 @default.
- W3014429891 countsByYear W30144298912022 @default.
- W3014429891 countsByYear W30144298912023 @default.
- W3014429891 crossrefType "journal-article" @default.
- W3014429891 hasAuthorship W3014429891A5013965127 @default.
- W3014429891 hasAuthorship W3014429891A5025144461 @default.
- W3014429891 hasAuthorship W3014429891A5040206867 @default.
- W3014429891 hasAuthorship W3014429891A5050767229 @default.
- W3014429891 hasAuthorship W3014429891A5058675792 @default.
- W3014429891 hasAuthorship W3014429891A5061787483 @default.
- W3014429891 hasAuthorship W3014429891A5077390693 @default.
- W3014429891 hasAuthorship W3014429891A5084718211 @default.
- W3014429891 hasConcept C126322002 @default.
- W3014429891 hasConcept C126838900 @default.
- W3014429891 hasConcept C142724271 @default.
- W3014429891 hasConcept C171089720 @default.
- W3014429891 hasConcept C2777214474 @default.
- W3014429891 hasConcept C2780496750 @default.
- W3014429891 hasConcept C2989005 @default.
- W3014429891 hasConcept C518705261 @default.
- W3014429891 hasConcept C71924100 @default.
- W3014429891 hasConceptScore W3014429891C126322002 @default.
- W3014429891 hasConceptScore W3014429891C126838900 @default.
- W3014429891 hasConceptScore W3014429891C142724271 @default.
- W3014429891 hasConceptScore W3014429891C171089720 @default.
- W3014429891 hasConceptScore W3014429891C2777214474 @default.
- W3014429891 hasConceptScore W3014429891C2780496750 @default.
- W3014429891 hasConceptScore W3014429891C2989005 @default.
- W3014429891 hasConceptScore W3014429891C518705261 @default.
- W3014429891 hasConceptScore W3014429891C71924100 @default.
- W3014429891 hasIssue "6" @default.
- W3014429891 hasLocation W30144298911 @default.
- W3014429891 hasOpenAccess W3014429891 @default.
- W3014429891 hasPrimaryLocation W30144298911 @default.
- W3014429891 hasRelatedWork W1560923390 @default.
- W3014429891 hasRelatedWork W2009823908 @default.
- W3014429891 hasRelatedWork W2340382683 @default.
- W3014429891 hasRelatedWork W2352171123 @default.
- W3014429891 hasRelatedWork W2358399733 @default.
- W3014429891 hasRelatedWork W2368857971 @default.
- W3014429891 hasRelatedWork W2377446345 @default.
- W3014429891 hasRelatedWork W2414281636 @default.
- W3014429891 hasRelatedWork W2613952836 @default.
- W3014429891 hasRelatedWork W2981829875 @default.
- W3014429891 hasVolume "55" @default.
- W3014429891 isParatext "false" @default.
- W3014429891 isRetracted "false" @default.
- W3014429891 magId "3014429891" @default.
- W3014429891 workType "article" @default.