Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014458395> ?p ?o ?g. }
- W3014458395 endingPage "2050061" @default.
- W3014458395 startingPage "2050061" @default.
- W3014458395 abstract "Data processing with multiple domains is an important concept in any platform; it deals with multimedia and textual information. Where textual data processing focuses on a structured or unstructured way of data processing which computes in less time with no compression over the data, multimedia data are processing deals with a processing requirement algorithm where compression is needed. This involve processing of video and their frames and compression in short forms such that the fast processing of storage as well as the access can be performed. There are different ways of performing compression, such as fractal compression, wavelet transform, compressive sensing, contractive transformation and other ways. One way of performing such a compression is working with the high frequency component of multimedia data. One of the most recent topics is fractal transformation which follows the block symmetry and archives high compression ratio. Yet, there are limitations such as working with speed and its cost while performing proper encoding and decoding using fractal compression. Swarm optimization and other related algorithms make it usable along with fractal compression function. In this paper, we review multiple algorithms in the field of fractal-based video compression and swarm intelligence for problems of optimization." @default.
- W3014458395 created "2020-04-10" @default.
- W3014458395 creator A5022492765 @default.
- W3014458395 creator A5049413859 @default.
- W3014458395 creator A5053638739 @default.
- W3014458395 creator A5057868351 @default.
- W3014458395 creator A5065530352 @default.
- W3014458395 creator A5084840635 @default.
- W3014458395 date "2020-03-30" @default.
- W3014458395 modified "2023-10-02" @default.
- W3014458395 title "Review of video compression techniques based on fractal transform function and swarm intelligence" @default.
- W3014458395 cites W138908576 @default.
- W3014458395 cites W1582330282 @default.
- W3014458395 cites W1705128515 @default.
- W3014458395 cites W1958622067 @default.
- W3014458395 cites W1967707633 @default.
- W3014458395 cites W1969225289 @default.
- W3014458395 cites W1977220226 @default.
- W3014458395 cites W1988599572 @default.
- W3014458395 cites W1990881985 @default.
- W3014458395 cites W2001026215 @default.
- W3014458395 cites W2006088767 @default.
- W3014458395 cites W2009389445 @default.
- W3014458395 cites W2009874904 @default.
- W3014458395 cites W2023154137 @default.
- W3014458395 cites W2023205171 @default.
- W3014458395 cites W2029294621 @default.
- W3014458395 cites W2035992948 @default.
- W3014458395 cites W2037979706 @default.
- W3014458395 cites W2039265575 @default.
- W3014458395 cites W2044470449 @default.
- W3014458395 cites W2047426149 @default.
- W3014458395 cites W2047488029 @default.
- W3014458395 cites W2052635379 @default.
- W3014458395 cites W2060253393 @default.
- W3014458395 cites W2063431805 @default.
- W3014458395 cites W2077083062 @default.
- W3014458395 cites W2081682760 @default.
- W3014458395 cites W2085491701 @default.
- W3014458395 cites W2090308772 @default.
- W3014458395 cites W2110784857 @default.
- W3014458395 cites W2127537568 @default.
- W3014458395 cites W2140029418 @default.
- W3014458395 cites W2159577413 @default.
- W3014458395 cites W2176069461 @default.
- W3014458395 cites W2227777212 @default.
- W3014458395 cites W2328563735 @default.
- W3014458395 cites W2334289171 @default.
- W3014458395 cites W2558949500 @default.
- W3014458395 cites W2614477396 @default.
- W3014458395 cites W26456325 @default.
- W3014458395 cites W2801243013 @default.
- W3014458395 cites W4253226069 @default.
- W3014458395 doi "https://doi.org/10.1142/s0217979220500617" @default.
- W3014458395 hasPublicationYear "2020" @default.
- W3014458395 type Work @default.
- W3014458395 sameAs 3014458395 @default.
- W3014458395 citedByCount "41" @default.
- W3014458395 countsByYear W30144583952021 @default.
- W3014458395 countsByYear W30144583952022 @default.
- W3014458395 countsByYear W30144583952023 @default.
- W3014458395 crossrefType "journal-article" @default.
- W3014458395 hasAuthorship W3014458395A5022492765 @default.
- W3014458395 hasAuthorship W3014458395A5049413859 @default.
- W3014458395 hasAuthorship W3014458395A5053638739 @default.
- W3014458395 hasAuthorship W3014458395A5057868351 @default.
- W3014458395 hasAuthorship W3014458395A5065530352 @default.
- W3014458395 hasAuthorship W3014458395A5084840635 @default.
- W3014458395 hasConcept C106030495 @default.
- W3014458395 hasConcept C109116516 @default.
- W3014458395 hasConcept C11413529 @default.
- W3014458395 hasConcept C115961682 @default.
- W3014458395 hasConcept C127413603 @default.
- W3014458395 hasConcept C134306372 @default.
- W3014458395 hasConcept C13481523 @default.
- W3014458395 hasConcept C144112376 @default.
- W3014458395 hasConcept C154945302 @default.
- W3014458395 hasConcept C171146098 @default.
- W3014458395 hasConcept C196216189 @default.
- W3014458395 hasConcept C202474056 @default.
- W3014458395 hasConcept C25797200 @default.
- W3014458395 hasConcept C31972630 @default.
- W3014458395 hasConcept C33923547 @default.
- W3014458395 hasConcept C40636538 @default.
- W3014458395 hasConcept C41008148 @default.
- W3014458395 hasConcept C47432892 @default.
- W3014458395 hasConcept C511840579 @default.
- W3014458395 hasConcept C65483669 @default.
- W3014458395 hasConcept C78548338 @default.
- W3014458395 hasConcept C81081738 @default.
- W3014458395 hasConcept C9417928 @default.
- W3014458395 hasConcept C94835093 @default.
- W3014458395 hasConceptScore W3014458395C106030495 @default.
- W3014458395 hasConceptScore W3014458395C109116516 @default.
- W3014458395 hasConceptScore W3014458395C11413529 @default.
- W3014458395 hasConceptScore W3014458395C115961682 @default.
- W3014458395 hasConceptScore W3014458395C127413603 @default.
- W3014458395 hasConceptScore W3014458395C134306372 @default.