Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014473612> ?p ?o ?g. }
- W3014473612 endingPage "13495" @default.
- W3014473612 startingPage "13483" @default.
- W3014473612 abstract "The running state of the hybrid tram and the service life of fuel cell stacks are related to the fault diagnosis strategy of the proton exchange membrane fuel cell (PEMFC) system. In order to accurately detect various fault types, a novel method is proposed to classify the different health states, which is composed of simulated annealing genetic algorithm fuzzy c-means clustering (SAGAFCM) and deep belief network (DBN) combined with synthetic minority over-sampling technique (SMOTE). Operation data generated by the tram are clustered by SAGAFCM algorithm, and valid data are selected as fault diagnosis samples which include the training sample and the test sample. However, the fault samples are usually unbalanced data. To reduce the influence of unbalanced data on the fault diagnosis accuracy, SMOTE is employed to form a new training sample by supplementing the data of the small sample. Then DBN is trained by the new training sample to obtain the fault diagnosis model. In this paper, the proposed method can well distinguish the four health states, which are high deionized water inlet temperature fault, hydrogen leakage fault, low air pressure fault and the normal state, with an accuracy of 99.97% for the training sample and 100% for the test sample." @default.
- W3014473612 created "2020-04-10" @default.
- W3014473612 creator A5078618773 @default.
- W3014473612 creator A5080370581 @default.
- W3014473612 creator A5081265423 @default.
- W3014473612 date "2020-05-01" @default.
- W3014473612 modified "2023-10-05" @default.
- W3014473612 title "Data-driven fault diagnosis for PEMFC systems of hybrid tram based on deep learning" @default.
- W3014473612 cites W1815912381 @default.
- W3014473612 cites W1971369189 @default.
- W3014473612 cites W1991011812 @default.
- W3014473612 cites W1991297579 @default.
- W3014473612 cites W1998399571 @default.
- W3014473612 cites W2014954055 @default.
- W3014473612 cites W2044332004 @default.
- W3014473612 cites W2049503654 @default.
- W3014473612 cites W2063922127 @default.
- W3014473612 cites W2068788096 @default.
- W3014473612 cites W2079074707 @default.
- W3014473612 cites W2080423055 @default.
- W3014473612 cites W2116064496 @default.
- W3014473612 cites W2136922672 @default.
- W3014473612 cites W2178155017 @default.
- W3014473612 cites W2251531558 @default.
- W3014473612 cites W2319292949 @default.
- W3014473612 cites W241761151 @default.
- W3014473612 cites W2514061095 @default.
- W3014473612 cites W2524663677 @default.
- W3014473612 cites W2597136874 @default.
- W3014473612 cites W2610520935 @default.
- W3014473612 cites W2621038327 @default.
- W3014473612 cites W2754709718 @default.
- W3014473612 cites W2766609847 @default.
- W3014473612 cites W2769206587 @default.
- W3014473612 cites W2771524553 @default.
- W3014473612 cites W2786001248 @default.
- W3014473612 cites W2796482884 @default.
- W3014473612 cites W2805610399 @default.
- W3014473612 cites W2893670750 @default.
- W3014473612 cites W2893820747 @default.
- W3014473612 cites W2894551672 @default.
- W3014473612 cites W2894758925 @default.
- W3014473612 cites W2899705330 @default.
- W3014473612 cites W2900205075 @default.
- W3014473612 cites W2901984096 @default.
- W3014473612 cites W2903582681 @default.
- W3014473612 cites W2903585214 @default.
- W3014473612 cites W2904696084 @default.
- W3014473612 cites W2912000172 @default.
- W3014473612 cites W2947216973 @default.
- W3014473612 cites W2955613453 @default.
- W3014473612 cites W2967485781 @default.
- W3014473612 cites W2969727807 @default.
- W3014473612 cites W2971496061 @default.
- W3014473612 cites W2984340083 @default.
- W3014473612 cites W2984929064 @default.
- W3014473612 cites W3003045510 @default.
- W3014473612 cites W3126013145 @default.
- W3014473612 doi "https://doi.org/10.1016/j.ijhydene.2020.03.035" @default.
- W3014473612 hasPublicationYear "2020" @default.
- W3014473612 type Work @default.
- W3014473612 sameAs 3014473612 @default.
- W3014473612 citedByCount "49" @default.
- W3014473612 countsByYear W30144736122020 @default.
- W3014473612 countsByYear W30144736122021 @default.
- W3014473612 countsByYear W30144736122022 @default.
- W3014473612 countsByYear W30144736122023 @default.
- W3014473612 crossrefType "journal-article" @default.
- W3014473612 hasAuthorship W3014473612A5078618773 @default.
- W3014473612 hasAuthorship W3014473612A5080370581 @default.
- W3014473612 hasAuthorship W3014473612A5081265423 @default.
- W3014473612 hasConcept C11413529 @default.
- W3014473612 hasConcept C119599485 @default.
- W3014473612 hasConcept C124101348 @default.
- W3014473612 hasConcept C126953365 @default.
- W3014473612 hasConcept C127313418 @default.
- W3014473612 hasConcept C127413603 @default.
- W3014473612 hasConcept C132319479 @default.
- W3014473612 hasConcept C134146338 @default.
- W3014473612 hasConcept C153180895 @default.
- W3014473612 hasConcept C154945302 @default.
- W3014473612 hasConcept C165205528 @default.
- W3014473612 hasConcept C16910744 @default.
- W3014473612 hasConcept C175551986 @default.
- W3014473612 hasConcept C185592680 @default.
- W3014473612 hasConcept C198531522 @default.
- W3014473612 hasConcept C199360897 @default.
- W3014473612 hasConcept C2987658370 @default.
- W3014473612 hasConcept C41008148 @default.
- W3014473612 hasConcept C42360764 @default.
- W3014473612 hasConcept C43617362 @default.
- W3014473612 hasConcept C50644808 @default.
- W3014473612 hasConcept C73555534 @default.
- W3014473612 hasConceptScore W3014473612C11413529 @default.
- W3014473612 hasConceptScore W3014473612C119599485 @default.
- W3014473612 hasConceptScore W3014473612C124101348 @default.
- W3014473612 hasConceptScore W3014473612C126953365 @default.
- W3014473612 hasConceptScore W3014473612C127313418 @default.