Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014525525> ?p ?o ?g. }
- W3014525525 endingPage "106168" @default.
- W3014525525 startingPage "106168" @default.
- W3014525525 abstract "Meteorological and agricultural information coupled with remote sensing observations has been used to assess the effectiveness of satellite-derived indices in yield estimations. The estimate yield models generated by both the regression (MLR) and Bayesian network (BBN) algorithms and their levels of predictive skill were assessed. The enhanced vegetation index (EVI2), soil water index (SWI), standardized precipitation evaporation index (SPEI) have been considered predictors for three rainfed crops (maize, sunflower and grapevine) grown in 37 districts in the Republic of Moldova (RM). We used the weekly EVI2, which was collected by MODIS instruments aboard the Terra satellite with a 250m × 250m spatial resolution and aggregated for each district during the 2000–2018 period. We also used the weekly SWI, which was collected from the ASCAT instruments with a 12 km x 12 km spatial resolution and aggregated for each district at the topsoil (0–40 cm; SWI-12) and the root-zone layer (0–100 cm; SWI-14) during 2000–2018. The multiscalar SPEI during 1951–2018 farming years proved to be a significant addition to the remote sensing indices and led to the development of a model that improved the yield assessment. The study also summarized (i) the optimal time window of satellite-derived SWIi and EVI2i for yield estimation, and (ii) the capability of remotely sensed indices for representing the spatio–temporal variations of agricultural droughts. We developed statistical soil-vegetation-atmosphere models to explore drought-related yield losses. The skill scores of the sunflower MLR and BBN models were higher than those for the maize and grape models and were able to estimate yields with reasonable accuracy and predictive power. The accurate estimation of maize, sunflower and grapevine yields was observed two months before the harvest (RMSE of ∼1.2 tha-1). Despite the fact that summer crops (maize, sunflower) are able to develop a root system that uses the entire root zone depth, however, the SWI-12 had the stronger correlation with crop yield, then SWI-14. This explains much better the fit between yields of the crops and SWI-12, which represents soil moisture anomaly in the key rooting layer of soil. In any case, all summer crops showed negative correlations with each of the remote sensing soil moisture indices in the early and middle of the growing season, with SWI-12 performing better than SWI-14. Based on the crop-specific soil moisture model, we found that topsoil moisture declines in the most drought-susceptible crop growth stages, which indicates that RM is a good candidate for studying drought persists as main driver of rainfed yield losses in the south-eastern Europe." @default.
- W3014525525 created "2020-04-10" @default.
- W3014525525 creator A5009623216 @default.
- W3014525525 creator A5052418326 @default.
- W3014525525 creator A5061008486 @default.
- W3014525525 creator A5065473312 @default.
- W3014525525 creator A5073132339 @default.
- W3014525525 date "2020-06-01" @default.
- W3014525525 modified "2023-10-18" @default.
- W3014525525 title "Statistical modelling of drought-related yield losses using soil moisture-vegetation remote sensing and multiscalar indices in the south-eastern Europe" @default.
- W3014525525 cites W1519662490 @default.
- W3014525525 cites W1852117708 @default.
- W3014525525 cites W1989279348 @default.
- W3014525525 cites W2005130804 @default.
- W3014525525 cites W2016403865 @default.
- W3014525525 cites W2029486861 @default.
- W3014525525 cites W2053259749 @default.
- W3014525525 cites W2058180105 @default.
- W3014525525 cites W2073624937 @default.
- W3014525525 cites W2077814694 @default.
- W3014525525 cites W2094677081 @default.
- W3014525525 cites W2107093743 @default.
- W3014525525 cites W2113410727 @default.
- W3014525525 cites W2117162642 @default.
- W3014525525 cites W2123744475 @default.
- W3014525525 cites W2133884359 @default.
- W3014525525 cites W2158756518 @default.
- W3014525525 cites W2181538527 @default.
- W3014525525 cites W2202019762 @default.
- W3014525525 cites W2288246967 @default.
- W3014525525 cites W2433811008 @default.
- W3014525525 cites W2466677789 @default.
- W3014525525 cites W2472414862 @default.
- W3014525525 cites W2509333348 @default.
- W3014525525 cites W2516989966 @default.
- W3014525525 cites W2583159613 @default.
- W3014525525 cites W2588316148 @default.
- W3014525525 cites W2606762649 @default.
- W3014525525 cites W2619644946 @default.
- W3014525525 cites W2738587434 @default.
- W3014525525 cites W2755735529 @default.
- W3014525525 cites W2790901450 @default.
- W3014525525 cites W2791138313 @default.
- W3014525525 cites W2796365778 @default.
- W3014525525 cites W2800299140 @default.
- W3014525525 cites W2804999555 @default.
- W3014525525 cites W2805453598 @default.
- W3014525525 cites W2806384619 @default.
- W3014525525 cites W2810045082 @default.
- W3014525525 cites W2810767109 @default.
- W3014525525 cites W2899086757 @default.
- W3014525525 cites W2899848994 @default.
- W3014525525 cites W2900676627 @default.
- W3014525525 cites W2900934883 @default.
- W3014525525 cites W2911546748 @default.
- W3014525525 cites W2913595253 @default.
- W3014525525 cites W2918161279 @default.
- W3014525525 cites W2930069233 @default.
- W3014525525 cites W2980087798 @default.
- W3014525525 cites W3035135736 @default.
- W3014525525 doi "https://doi.org/10.1016/j.agwat.2020.106168" @default.
- W3014525525 hasPublicationYear "2020" @default.
- W3014525525 type Work @default.
- W3014525525 sameAs 3014525525 @default.
- W3014525525 citedByCount "37" @default.
- W3014525525 countsByYear W30145255252020 @default.
- W3014525525 countsByYear W30145255252021 @default.
- W3014525525 countsByYear W30145255252022 @default.
- W3014525525 countsByYear W30145255252023 @default.
- W3014525525 crossrefType "journal-article" @default.
- W3014525525 hasAuthorship W3014525525A5009623216 @default.
- W3014525525 hasAuthorship W3014525525A5052418326 @default.
- W3014525525 hasAuthorship W3014525525A5061008486 @default.
- W3014525525 hasAuthorship W3014525525A5065473312 @default.
- W3014525525 hasAuthorship W3014525525A5073132339 @default.
- W3014525525 hasConcept C107054158 @default.
- W3014525525 hasConcept C126343540 @default.
- W3014525525 hasConcept C127313418 @default.
- W3014525525 hasConcept C134121241 @default.
- W3014525525 hasConcept C142724271 @default.
- W3014525525 hasConcept C153294291 @default.
- W3014525525 hasConcept C1549246 @default.
- W3014525525 hasConcept C159390177 @default.
- W3014525525 hasConcept C159750122 @default.
- W3014525525 hasConcept C187320778 @default.
- W3014525525 hasConcept C191897082 @default.
- W3014525525 hasConcept C192562407 @default.
- W3014525525 hasConcept C20529654 @default.
- W3014525525 hasConcept C205649164 @default.
- W3014525525 hasConcept C25989453 @default.
- W3014525525 hasConcept C2776133958 @default.
- W3014525525 hasConcept C39432304 @default.
- W3014525525 hasConcept C6557445 @default.
- W3014525525 hasConcept C71924100 @default.
- W3014525525 hasConcept C76886044 @default.
- W3014525525 hasConcept C86803240 @default.
- W3014525525 hasConceptScore W3014525525C107054158 @default.
- W3014525525 hasConceptScore W3014525525C126343540 @default.