Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014580770> ?p ?o ?g. }
- W3014580770 endingPage "64759" @default.
- W3014580770 startingPage "64750" @default.
- W3014580770 abstract "In this paper, we propose a new ensemble residual network model for short-term load forecasting (STLF). This model improves the accuracy of short-term load forecasting (24 hours in advance). The model has a two-stage network structure. First, the different fully-connected layers are combined, and the combined structure is similar to a recurrent neural network (RNN). Features obtained from historical load data are input to the first stage of the model to get preliminary prediction results. The second stage of the model is a modified residual network, and the final predictions are output from here. We use the ensemble snapshot model with learning rate decay to improve the generalization capability of the model. The model proposed in this paper was trained and tested on two public datasets. Numerical testing shows that the proposed model can get better forecasting results in comparison with other methods, and the ensemble method adopted effectively improves the generalization ability of the model." @default.
- W3014580770 created "2020-04-10" @default.
- W3014580770 creator A5006706205 @default.
- W3014580770 creator A5020085077 @default.
- W3014580770 creator A5020812946 @default.
- W3014580770 date "2020-01-01" @default.
- W3014580770 modified "2023-10-18" @default.
- W3014580770 title "Ensemble Residual Networks for Short-Term Load Forecasting" @default.
- W3014580770 cites W1908962573 @default.
- W3014580770 cites W1963682480 @default.
- W3014580770 cites W1964984358 @default.
- W3014580770 cites W1967690950 @default.
- W3014580770 cites W1976047713 @default.
- W3014580770 cites W2001631452 @default.
- W3014580770 cites W2014349106 @default.
- W3014580770 cites W2017561014 @default.
- W3014580770 cites W2026131661 @default.
- W3014580770 cites W2029784539 @default.
- W3014580770 cites W2040414337 @default.
- W3014580770 cites W2058326618 @default.
- W3014580770 cites W2062227835 @default.
- W3014580770 cites W2083172453 @default.
- W3014580770 cites W2089822378 @default.
- W3014580770 cites W2095120062 @default.
- W3014580770 cites W2095731600 @default.
- W3014580770 cites W2100090926 @default.
- W3014580770 cites W2127691422 @default.
- W3014580770 cites W2133752269 @default.
- W3014580770 cites W2139073438 @default.
- W3014580770 cites W2157331557 @default.
- W3014580770 cites W2161297450 @default.
- W3014580770 cites W2194775991 @default.
- W3014580770 cites W2292129691 @default.
- W3014580770 cites W2530386080 @default.
- W3014580770 cites W2551161908 @default.
- W3014580770 cites W2611481346 @default.
- W3014580770 cites W2748388862 @default.
- W3014580770 cites W2754252319 @default.
- W3014580770 cites W2771018930 @default.
- W3014580770 cites W2792961021 @default.
- W3014580770 cites W2805797750 @default.
- W3014580770 cites W2889480665 @default.
- W3014580770 cites W2894793845 @default.
- W3014580770 cites W2906333996 @default.
- W3014580770 cites W2950877184 @default.
- W3014580770 cites W2954123905 @default.
- W3014580770 cites W2969308181 @default.
- W3014580770 cites W2990622714 @default.
- W3014580770 cites W3145309726 @default.
- W3014580770 doi "https://doi.org/10.1109/access.2020.2984722" @default.
- W3014580770 hasPublicationYear "2020" @default.
- W3014580770 type Work @default.
- W3014580770 sameAs 3014580770 @default.
- W3014580770 citedByCount "10" @default.
- W3014580770 countsByYear W30145807702020 @default.
- W3014580770 countsByYear W30145807702021 @default.
- W3014580770 countsByYear W30145807702022 @default.
- W3014580770 crossrefType "journal-article" @default.
- W3014580770 hasAuthorship W3014580770A5006706205 @default.
- W3014580770 hasAuthorship W3014580770A5020085077 @default.
- W3014580770 hasAuthorship W3014580770A5020812946 @default.
- W3014580770 hasBestOaLocation W30145807701 @default.
- W3014580770 hasConcept C111919701 @default.
- W3014580770 hasConcept C11413529 @default.
- W3014580770 hasConcept C117765406 @default.
- W3014580770 hasConcept C119857082 @default.
- W3014580770 hasConcept C119898033 @default.
- W3014580770 hasConcept C121332964 @default.
- W3014580770 hasConcept C124101348 @default.
- W3014580770 hasConcept C134306372 @default.
- W3014580770 hasConcept C147168706 @default.
- W3014580770 hasConcept C154945302 @default.
- W3014580770 hasConcept C155512373 @default.
- W3014580770 hasConcept C177148314 @default.
- W3014580770 hasConcept C33923547 @default.
- W3014580770 hasConcept C41008148 @default.
- W3014580770 hasConcept C45942800 @default.
- W3014580770 hasConcept C50644808 @default.
- W3014580770 hasConcept C55282118 @default.
- W3014580770 hasConcept C61797465 @default.
- W3014580770 hasConcept C62520636 @default.
- W3014580770 hasConceptScore W3014580770C111919701 @default.
- W3014580770 hasConceptScore W3014580770C11413529 @default.
- W3014580770 hasConceptScore W3014580770C117765406 @default.
- W3014580770 hasConceptScore W3014580770C119857082 @default.
- W3014580770 hasConceptScore W3014580770C119898033 @default.
- W3014580770 hasConceptScore W3014580770C121332964 @default.
- W3014580770 hasConceptScore W3014580770C124101348 @default.
- W3014580770 hasConceptScore W3014580770C134306372 @default.
- W3014580770 hasConceptScore W3014580770C147168706 @default.
- W3014580770 hasConceptScore W3014580770C154945302 @default.
- W3014580770 hasConceptScore W3014580770C155512373 @default.
- W3014580770 hasConceptScore W3014580770C177148314 @default.
- W3014580770 hasConceptScore W3014580770C33923547 @default.
- W3014580770 hasConceptScore W3014580770C41008148 @default.
- W3014580770 hasConceptScore W3014580770C45942800 @default.
- W3014580770 hasConceptScore W3014580770C50644808 @default.
- W3014580770 hasConceptScore W3014580770C55282118 @default.