Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014587794> ?p ?o ?g. }
- W3014587794 endingPage "224" @default.
- W3014587794 startingPage "212" @default.
- W3014587794 abstract "Mediterranean islands have the advantage of favourable climatic conditions to use different marine renewable energy sources. Remote sensing can provide data to determine wind energy production potential and observational activity to identify, assess and detect suitable points in large marine areas. In this paper, a new combined model has been developed to integrate wind speed assessment, mapping and forecasting using Sentinel 1 satellite data through images processing and Adaptive Neuro-Fuzzy Inference System and the Bat algorithm. Synthetic Aperture Radar (SAR) satellite images from the Sentinel 1 satellite have been used in order to detect offshore and nearshore wind potential. Particularly, Sentinel 1 images have been analysed by means of the SNAP software. Then, to extract data about wind speed and direction, a GIS software for mapping the wind climate has been used. This new methodology has been applied to the North-Central coasts of Sardinia Island and then focused on six main small islands of La Maddalena archipelago. Furthermore, ten Hot Spots (HSs) have been identified as interesting because of their high-energy potential and the possibility to be considered as sites for future implementation of Wind Turbine Generators (WTGs). Finally, the ten identified HS have been used as input data to train and test the proposed forecast model. • Wind speed retrieval from Sentinel 1 satellite by means of the SNAP software. • Wind speed mapping through the GIS software. • A new combined model for wind speed forecasting is proposed. • The input data of the forecasting model is based on satellite images processing." @default.
- W3014587794 created "2020-04-10" @default.
- W3014587794 creator A5031276155 @default.
- W3014587794 creator A5061444286 @default.
- W3014587794 creator A5061688369 @default.
- W3014587794 creator A5065672475 @default.
- W3014587794 creator A5080691995 @default.
- W3014587794 date "2020-08-01" @default.
- W3014587794 modified "2023-09-30" @default.
- W3014587794 title "Wind source potential assessment using Sentinel 1 satellite and a new forecasting model based on machine learning: A case study Sardinia islands" @default.
- W3014587794 cites W1965301808 @default.
- W3014587794 cites W1969281589 @default.
- W3014587794 cites W1975756703 @default.
- W3014587794 cites W1996856936 @default.
- W3014587794 cites W1997950256 @default.
- W3014587794 cites W2006425632 @default.
- W3014587794 cites W2012264565 @default.
- W3014587794 cites W2059321411 @default.
- W3014587794 cites W2091760552 @default.
- W3014587794 cites W2091979580 @default.
- W3014587794 cites W2093761294 @default.
- W3014587794 cites W2095471434 @default.
- W3014587794 cites W2113790617 @default.
- W3014587794 cites W2116581292 @default.
- W3014587794 cites W2121067351 @default.
- W3014587794 cites W2123493411 @default.
- W3014587794 cites W2127392264 @default.
- W3014587794 cites W2130076236 @default.
- W3014587794 cites W2172833944 @default.
- W3014587794 cites W2193660226 @default.
- W3014587794 cites W2549499983 @default.
- W3014587794 cites W2558083767 @default.
- W3014587794 cites W2560484506 @default.
- W3014587794 cites W2562338847 @default.
- W3014587794 cites W2604626072 @default.
- W3014587794 cites W2626405089 @default.
- W3014587794 cites W2649864530 @default.
- W3014587794 cites W2765271612 @default.
- W3014587794 cites W2775184353 @default.
- W3014587794 cites W2775807939 @default.
- W3014587794 cites W2782522152 @default.
- W3014587794 cites W2783151731 @default.
- W3014587794 cites W2789171697 @default.
- W3014587794 cites W2790718998 @default.
- W3014587794 cites W2790722396 @default.
- W3014587794 cites W2793688347 @default.
- W3014587794 cites W2794902965 @default.
- W3014587794 cites W2889193211 @default.
- W3014587794 cites W2889942169 @default.
- W3014587794 cites W2895169664 @default.
- W3014587794 cites W2895992043 @default.
- W3014587794 cites W2896568557 @default.
- W3014587794 cites W2897625161 @default.
- W3014587794 cites W2897671406 @default.
- W3014587794 cites W2903953981 @default.
- W3014587794 cites W2905094571 @default.
- W3014587794 cites W2908117871 @default.
- W3014587794 cites W2909317498 @default.
- W3014587794 cites W2910724736 @default.
- W3014587794 cites W2911237609 @default.
- W3014587794 cites W2913485255 @default.
- W3014587794 cites W2915742901 @default.
- W3014587794 cites W2921106428 @default.
- W3014587794 cites W2924894315 @default.
- W3014587794 cites W2928007866 @default.
- W3014587794 cites W2941087909 @default.
- W3014587794 cites W2941260969 @default.
- W3014587794 cites W2946939570 @default.
- W3014587794 cites W2954220706 @default.
- W3014587794 cites W2957379124 @default.
- W3014587794 cites W2972673419 @default.
- W3014587794 cites W2982401104 @default.
- W3014587794 cites W2986689506 @default.
- W3014587794 cites W2991035534 @default.
- W3014587794 cites W3000206326 @default.
- W3014587794 cites W4248960939 @default.
- W3014587794 doi "https://doi.org/10.1016/j.renene.2020.03.148" @default.
- W3014587794 hasPublicationYear "2020" @default.
- W3014587794 type Work @default.
- W3014587794 sameAs 3014587794 @default.
- W3014587794 citedByCount "30" @default.
- W3014587794 countsByYear W30145877942020 @default.
- W3014587794 countsByYear W30145877942021 @default.
- W3014587794 countsByYear W30145877942022 @default.
- W3014587794 countsByYear W30145877942023 @default.
- W3014587794 crossrefType "journal-article" @default.
- W3014587794 hasAuthorship W3014587794A5031276155 @default.
- W3014587794 hasAuthorship W3014587794A5061444286 @default.
- W3014587794 hasAuthorship W3014587794A5061688369 @default.
- W3014587794 hasAuthorship W3014587794A5065672475 @default.
- W3014587794 hasAuthorship W3014587794A5080691995 @default.
- W3014587794 hasConcept C119599485 @default.
- W3014587794 hasConcept C127413603 @default.
- W3014587794 hasConcept C146978453 @default.
- W3014587794 hasConcept C153294291 @default.
- W3014587794 hasConcept C161067210 @default.
- W3014587794 hasConcept C188573790 @default.
- W3014587794 hasConcept C19269812 @default.