Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014590501> ?p ?o ?g. }
- W3014590501 endingPage "e0008179" @default.
- W3014590501 startingPage "e0008179" @default.
- W3014590501 abstract "Zoonotic diseases affect resource-poor tropical communities disproportionately, and are linked to human use and modification of ecosystems. Disentangling the socio-ecological mechanisms by which ecosystem change precipitates impacts of pathogens is critical for predicting disease risk and designing effective intervention strategies. Despite the global “One Health” initiative, predictive models for tropical zoonotic diseases often focus on narrow ranges of risk factors and are rarely scaled to intervention programs and ecosystem use. This study uses a participatory, co-production approach to address this disconnect between science, policy and implementation, by developing more informative disease models for a fatal tick-borne viral haemorrhagic disease, Kyasanur Forest Disease (KFD), that is spreading across degraded forest ecosystems in India. We integrated knowledge across disciplines to identify key risk factors and needs with actors and beneficiaries across the relevant policy sectors, to understand disease patterns and develop decision support tools. Human case locations (2014–2018) and spatial machine learning quantified the relative role of risk factors, including forest cover and loss, host densities and public health access, in driving landscape-scale disease patterns in a long-affected district (Shivamogga, Karnataka State). Models combining forest metrics, livestock densities and elevation accurately predicted spatial patterns in human KFD cases (2014–2018). Consistent with suggestions that KFD is an “ecotonal” disease, landscapes at higher risk for human KFD contained diverse forest-plantation mosaics with high coverage of moist evergreen forest and plantation, high indigenous cattle density, and low coverage of dry deciduous forest. Models predicted new hotspots of outbreaks in 2019, indicating their value for spatial targeting of intervention. Co-production was vital for: gathering outbreak data that reflected locations of exposure in the landscape; better understanding contextual socio-ecological risk factors; and tailoring the spatial grain and outputs to the scale of forest use, and public health interventions. We argue this inter-disciplinary approach to risk prediction is applicable across zoonotic diseases in tropical settings." @default.
- W3014590501 created "2020-04-10" @default.
- W3014590501 creator A5002877874 @default.
- W3014590501 creator A5010511785 @default.
- W3014590501 creator A5012613211 @default.
- W3014590501 creator A5027514309 @default.
- W3014590501 creator A5037643250 @default.
- W3014590501 creator A5043260157 @default.
- W3014590501 creator A5045157719 @default.
- W3014590501 creator A5051647857 @default.
- W3014590501 creator A5053308507 @default.
- W3014590501 creator A5059457122 @default.
- W3014590501 creator A5062261348 @default.
- W3014590501 creator A5074022144 @default.
- W3014590501 creator A5075666108 @default.
- W3014590501 creator A5076582132 @default.
- W3014590501 creator A5076642788 @default.
- W3014590501 creator A5078889144 @default.
- W3014590501 creator A5081633801 @default.
- W3014590501 creator A5082989542 @default.
- W3014590501 creator A5091242007 @default.
- W3014590501 date "2020-04-07" @default.
- W3014590501 modified "2023-10-16" @default.
- W3014590501 title "Predicting disease risk areas through co-production of spatial models: The example of Kyasanur Forest Disease in India’s forest landscapes" @default.
- W3014590501 cites W1524365672 @default.
- W3014590501 cites W1526319989 @default.
- W3014590501 cites W1734425058 @default.
- W3014590501 cites W1972348163 @default.
- W3014590501 cites W1981213426 @default.
- W3014590501 cites W1988113894 @default.
- W3014590501 cites W1995555235 @default.
- W3014590501 cites W1999132250 @default.
- W3014590501 cites W2002221706 @default.
- W3014590501 cites W2009098209 @default.
- W3014590501 cites W2013754886 @default.
- W3014590501 cites W2025210927 @default.
- W3014590501 cites W2034100720 @default.
- W3014590501 cites W2051577658 @default.
- W3014590501 cites W2052583540 @default.
- W3014590501 cites W2057691392 @default.
- W3014590501 cites W2064153118 @default.
- W3014590501 cites W2065644629 @default.
- W3014590501 cites W2074960880 @default.
- W3014590501 cites W2082596553 @default.
- W3014590501 cites W2091466147 @default.
- W3014590501 cites W2091800573 @default.
- W3014590501 cites W2112315008 @default.
- W3014590501 cites W2121567763 @default.
- W3014590501 cites W2130695471 @default.
- W3014590501 cites W2135695572 @default.
- W3014590501 cites W2141256196 @default.
- W3014590501 cites W2141567528 @default.
- W3014590501 cites W2144274647 @default.
- W3014590501 cites W2144532936 @default.
- W3014590501 cites W2155617906 @default.
- W3014590501 cites W2160278500 @default.
- W3014590501 cites W2162308564 @default.
- W3014590501 cites W2163084903 @default.
- W3014590501 cites W2166800647 @default.
- W3014590501 cites W2177299793 @default.
- W3014590501 cites W2267420763 @default.
- W3014590501 cites W2271393317 @default.
- W3014590501 cites W2291230127 @default.
- W3014590501 cites W2326575761 @default.
- W3014590501 cites W2396894210 @default.
- W3014590501 cites W2589739846 @default.
- W3014590501 cites W2598190019 @default.
- W3014590501 cites W2605084723 @default.
- W3014590501 cites W2626471092 @default.
- W3014590501 cites W2761455773 @default.
- W3014590501 cites W2800308456 @default.
- W3014590501 cites W2886230335 @default.
- W3014590501 cites W2897282566 @default.
- W3014590501 cites W4249977334 @default.
- W3014590501 doi "https://doi.org/10.1371/journal.pntd.0008179" @default.
- W3014590501 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7164675" @default.
- W3014590501 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32255797" @default.
- W3014590501 hasPublicationYear "2020" @default.
- W3014590501 type Work @default.
- W3014590501 sameAs 3014590501 @default.
- W3014590501 citedByCount "26" @default.
- W3014590501 countsByYear W30145905012020 @default.
- W3014590501 countsByYear W30145905012021 @default.
- W3014590501 countsByYear W30145905012022 @default.
- W3014590501 countsByYear W30145905012023 @default.
- W3014590501 crossrefType "journal-article" @default.
- W3014590501 hasAuthorship W3014590501A5002877874 @default.
- W3014590501 hasAuthorship W3014590501A5010511785 @default.
- W3014590501 hasAuthorship W3014590501A5012613211 @default.
- W3014590501 hasAuthorship W3014590501A5027514309 @default.
- W3014590501 hasAuthorship W3014590501A5037643250 @default.
- W3014590501 hasAuthorship W3014590501A5043260157 @default.
- W3014590501 hasAuthorship W3014590501A5045157719 @default.
- W3014590501 hasAuthorship W3014590501A5051647857 @default.
- W3014590501 hasAuthorship W3014590501A5053308507 @default.
- W3014590501 hasAuthorship W3014590501A5059457122 @default.
- W3014590501 hasAuthorship W3014590501A5062261348 @default.
- W3014590501 hasAuthorship W3014590501A5074022144 @default.