Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014606235> ?p ?o ?g. }
- W3014606235 abstract "Identifying patients with mild cognitive impairment (MCI) who are at high risk of progressing to Alzheimer's disease (AD) is crucial for early treatment of AD. However, it is difficult to predict the cognitive states of patients. This study developed an extreme learning machine (ELM)-based grading method to efficiently fuse multimodal data and predict MCI-to-AD conversion. First, features were extracted from magnetic resonance (MR) images, and useful features were selected using a feature selection method. Second, multiple modalities of MCI subjects, including MRI, positron emission tomography, cerebrospinal fluid biomarkers, and gene data, were individually graded using the ELM method. Finally, these grading scores calculated from different modalities were fed into a classifier to discriminate subjects with progressive MCI from those with stable MCI. The proposed approach has been validated on the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort, and an accuracy of 84.7% was achieved for an AD prediction within 3 years. Experiments on predicting AD conversion from MCI within different periods showed similar results with the 3-year prediction. The experimental results demonstrate that the proposed approach benefits from the efficient fusion of four modalities, resulting in an accurate prediction of MCI-to-AD conversion." @default.
- W3014606235 created "2020-04-10" @default.
- W3014606235 creator A5005626770 @default.
- W3014606235 creator A5013466530 @default.
- W3014606235 creator A5027049527 @default.
- W3014606235 creator A5046088648 @default.
- W3014606235 creator A5053990010 @default.
- W3014606235 creator A5071593501 @default.
- W3014606235 creator A5075202124 @default.
- W3014606235 creator A5084595802 @default.
- W3014606235 date "2020-04-01" @default.
- W3014606235 modified "2023-10-15" @default.
- W3014606235 title "Predicting Alzheimer’s Disease Conversion From Mild Cognitive Impairment Using an Extreme Learning Machine-Based Grading Method With Multimodal Data" @default.
- W3014606235 cites W1508702903 @default.
- W3014606235 cites W1554171816 @default.
- W3014606235 cites W1810343284 @default.
- W3014606235 cites W1969455604 @default.
- W3014606235 cites W1969787718 @default.
- W3014606235 cites W1978763244 @default.
- W3014606235 cites W1982145113 @default.
- W3014606235 cites W2014418634 @default.
- W3014606235 cites W2018935975 @default.
- W3014606235 cites W2026131661 @default.
- W3014606235 cites W2043768383 @default.
- W3014606235 cites W2046847841 @default.
- W3014606235 cites W2078551663 @default.
- W3014606235 cites W2078563723 @default.
- W3014606235 cites W2093602450 @default.
- W3014606235 cites W2098380943 @default.
- W3014606235 cites W2110208125 @default.
- W3014606235 cites W2111072639 @default.
- W3014606235 cites W2115779804 @default.
- W3014606235 cites W2126598020 @default.
- W3014606235 cites W2128251808 @default.
- W3014606235 cites W2130371234 @default.
- W3014606235 cites W2145796722 @default.
- W3014606235 cites W2146089088 @default.
- W3014606235 cites W2148046162 @default.
- W3014606235 cites W2151130155 @default.
- W3014606235 cites W2151920318 @default.
- W3014606235 cites W2155277084 @default.
- W3014606235 cites W2160034813 @default.
- W3014606235 cites W2167638846 @default.
- W3014606235 cites W2167840686 @default.
- W3014606235 cites W2171380313 @default.
- W3014606235 cites W2296478711 @default.
- W3014606235 cites W2313740103 @default.
- W3014606235 cites W2323681028 @default.
- W3014606235 cites W2396022766 @default.
- W3014606235 cites W2527824850 @default.
- W3014606235 cites W2527896982 @default.
- W3014606235 cites W2591025119 @default.
- W3014606235 cites W2727312249 @default.
- W3014606235 cites W2739778633 @default.
- W3014606235 cites W2788652605 @default.
- W3014606235 cites W2791282053 @default.
- W3014606235 cites W2793804994 @default.
- W3014606235 cites W2799428269 @default.
- W3014606235 cites W2900386946 @default.
- W3014606235 doi "https://doi.org/10.3389/fnagi.2020.00077" @default.
- W3014606235 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7140986" @default.
- W3014606235 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32296326" @default.
- W3014606235 hasPublicationYear "2020" @default.
- W3014606235 type Work @default.
- W3014606235 sameAs 3014606235 @default.
- W3014606235 citedByCount "29" @default.
- W3014606235 countsByYear W30146062352021 @default.
- W3014606235 countsByYear W30146062352022 @default.
- W3014606235 countsByYear W30146062352023 @default.
- W3014606235 crossrefType "journal-article" @default.
- W3014606235 hasAuthorship W3014606235A5005626770 @default.
- W3014606235 hasAuthorship W3014606235A5013466530 @default.
- W3014606235 hasAuthorship W3014606235A5027049527 @default.
- W3014606235 hasAuthorship W3014606235A5046088648 @default.
- W3014606235 hasAuthorship W3014606235A5053990010 @default.
- W3014606235 hasAuthorship W3014606235A5071593501 @default.
- W3014606235 hasAuthorship W3014606235A5075202124 @default.
- W3014606235 hasAuthorship W3014606235A5084595802 @default.
- W3014606235 hasBestOaLocation W30146062351 @default.
- W3014606235 hasConcept C119857082 @default.
- W3014606235 hasConcept C126838900 @default.
- W3014606235 hasConcept C142724271 @default.
- W3014606235 hasConcept C143409427 @default.
- W3014606235 hasConcept C144024400 @default.
- W3014606235 hasConcept C148483581 @default.
- W3014606235 hasConcept C153180895 @default.
- W3014606235 hasConcept C154945302 @default.
- W3014606235 hasConcept C15744967 @default.
- W3014606235 hasConcept C169760540 @default.
- W3014606235 hasConcept C169900460 @default.
- W3014606235 hasConcept C2775842073 @default.
- W3014606235 hasConcept C2778373026 @default.
- W3014606235 hasConcept C2779134260 @default.
- W3014606235 hasConcept C2779903281 @default.
- W3014606235 hasConcept C2984915365 @default.
- W3014606235 hasConcept C36289849 @default.
- W3014606235 hasConcept C41008148 @default.
- W3014606235 hasConcept C502032728 @default.
- W3014606235 hasConcept C58693492 @default.
- W3014606235 hasConcept C71924100 @default.