Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014644090> ?p ?o ?g. }
- W3014644090 endingPage "107768" @default.
- W3014644090 startingPage "107768" @default.
- W3014644090 abstract "Abstract The fault detection of rotating machinery systems especially its typical components such as bearings and gears is of special importance for maintaining machine systems working normally and safely. However, due to the change of working conditions, the disturbance of environment noise, the weakness of early features and various unseen compound failure modes, it is quite hard to achieve high-accuracy intelligent failure monitoring task of rotating machinery using existing intelligent fault diagnosis approaches in real industrial applications. In the paper, a novel and high-accuracy fault detection approach named WT-GAN-CNN for rotating machinery is presented based on Wavelet Transform (WT), Generative Adversarial Nets (GANs) and convolutional neural network (CNN). The proposed WT-GAN-CNN approach includes three parts. To begin with, WT is employed for extracting time-frequency image features from one-dimension raw time domain signals. Secondly, GANs are used to generate more training image samples. Finally, the built CNN model is used to accomplish the fault detection of rotating machinery by the original training time-frequency images and the generated fake training time-frequency images. Two experiment studies are implemented to assess the effectiveness of our proposed approach and the results demonstrate it is higher in testing accuracy than other intelligent failure detection approaches in the literatures even in the interference of strong environment noise or when working conditions are changed. Furthermore, its result in the stability of testing accuracy is also quite excellent." @default.
- W3014644090 created "2020-04-10" @default.
- W3014644090 creator A5011123518 @default.
- W3014644090 creator A5040651707 @default.
- W3014644090 creator A5078613260 @default.
- W3014644090 creator A5085467224 @default.
- W3014644090 date "2020-07-01" @default.
- W3014644090 modified "2023-10-06" @default.
- W3014644090 title "Intelligent fault diagnosis of rotating machinery via wavelet transform, generative adversarial nets and convolutional neural network" @default.
- W3014644090 cites W1977020076 @default.
- W3014644090 cites W2224737408 @default.
- W3014644090 cites W2405830411 @default.
- W3014644090 cites W243674440 @default.
- W3014644090 cites W2516154524 @default.
- W3014644090 cites W2556013418 @default.
- W3014644090 cites W2594244167 @default.
- W3014644090 cites W2734669076 @default.
- W3014644090 cites W2744790985 @default.
- W3014644090 cites W2753520939 @default.
- W3014644090 cites W2765975552 @default.
- W3014644090 cites W2768753204 @default.
- W3014644090 cites W2778801251 @default.
- W3014644090 cites W2790230453 @default.
- W3014644090 cites W2793173527 @default.
- W3014644090 cites W2799800773 @default.
- W3014644090 cites W2800808369 @default.
- W3014644090 cites W2803978172 @default.
- W3014644090 cites W2886794804 @default.
- W3014644090 cites W2887782657 @default.
- W3014644090 cites W2891319189 @default.
- W3014644090 cites W2893747136 @default.
- W3014644090 cites W2896708640 @default.
- W3014644090 cites W2900225293 @default.
- W3014644090 cites W2903917280 @default.
- W3014644090 cites W2907007702 @default.
- W3014644090 cites W2910881901 @default.
- W3014644090 cites W2911725274 @default.
- W3014644090 cites W2914309864 @default.
- W3014644090 cites W2914488306 @default.
- W3014644090 cites W2915423430 @default.
- W3014644090 cites W2940589124 @default.
- W3014644090 cites W2946805823 @default.
- W3014644090 cites W2947583263 @default.
- W3014644090 cites W2978144367 @default.
- W3014644090 cites W2986996311 @default.
- W3014644090 cites W2990273315 @default.
- W3014644090 doi "https://doi.org/10.1016/j.measurement.2020.107768" @default.
- W3014644090 hasPublicationYear "2020" @default.
- W3014644090 type Work @default.
- W3014644090 sameAs 3014644090 @default.
- W3014644090 citedByCount "110" @default.
- W3014644090 countsByYear W30146440902020 @default.
- W3014644090 countsByYear W30146440902021 @default.
- W3014644090 countsByYear W30146440902022 @default.
- W3014644090 countsByYear W30146440902023 @default.
- W3014644090 crossrefType "journal-article" @default.
- W3014644090 hasAuthorship W3014644090A5011123518 @default.
- W3014644090 hasAuthorship W3014644090A5040651707 @default.
- W3014644090 hasAuthorship W3014644090A5078613260 @default.
- W3014644090 hasAuthorship W3014644090A5085467224 @default.
- W3014644090 hasConcept C108583219 @default.
- W3014644090 hasConcept C127313418 @default.
- W3014644090 hasConcept C153180895 @default.
- W3014644090 hasConcept C154945302 @default.
- W3014644090 hasConcept C165205528 @default.
- W3014644090 hasConcept C175551986 @default.
- W3014644090 hasConcept C196216189 @default.
- W3014644090 hasConcept C2988773926 @default.
- W3014644090 hasConcept C37736160 @default.
- W3014644090 hasConcept C41008148 @default.
- W3014644090 hasConcept C47432892 @default.
- W3014644090 hasConcept C50644808 @default.
- W3014644090 hasConcept C81363708 @default.
- W3014644090 hasConceptScore W3014644090C108583219 @default.
- W3014644090 hasConceptScore W3014644090C127313418 @default.
- W3014644090 hasConceptScore W3014644090C153180895 @default.
- W3014644090 hasConceptScore W3014644090C154945302 @default.
- W3014644090 hasConceptScore W3014644090C165205528 @default.
- W3014644090 hasConceptScore W3014644090C175551986 @default.
- W3014644090 hasConceptScore W3014644090C196216189 @default.
- W3014644090 hasConceptScore W3014644090C2988773926 @default.
- W3014644090 hasConceptScore W3014644090C37736160 @default.
- W3014644090 hasConceptScore W3014644090C41008148 @default.
- W3014644090 hasConceptScore W3014644090C47432892 @default.
- W3014644090 hasConceptScore W3014644090C50644808 @default.
- W3014644090 hasConceptScore W3014644090C81363708 @default.
- W3014644090 hasFunder F4320321540 @default.
- W3014644090 hasLocation W30146440901 @default.
- W3014644090 hasOpenAccess W3014644090 @default.
- W3014644090 hasPrimaryLocation W30146440901 @default.
- W3014644090 hasRelatedWork W2175746458 @default.
- W3014644090 hasRelatedWork W2541950815 @default.
- W3014644090 hasRelatedWork W2732542196 @default.
- W3014644090 hasRelatedWork W2760085659 @default.
- W3014644090 hasRelatedWork W2804005492 @default.
- W3014644090 hasRelatedWork W3024390022 @default.
- W3014644090 hasRelatedWork W3081496756 @default.
- W3014644090 hasRelatedWork W3093612317 @default.