Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014645106> ?p ?o ?g. }
- W3014645106 endingPage "106431" @default.
- W3014645106 startingPage "106431" @default.
- W3014645106 abstract "Abstract In manufacturing scheduling, sustainability concerns that raise from the service-oriented performance criteria have seldom been studied in the literature. This study aims to fill this gap in the literature by integrating the different energy consumption levels at the operational level. Since energy-efficient scheduling ideas have recently been increasing its popularity in industry due to the need for sustainable production, this study will be a good resource for future energy-efficient scheduling problems. Energy consumption in high volume manufacturing is a significant cost item in most industries. Potential energy saving mechanisms are needed to be integrated into manufacturing facilities for cost minimization at the operational level. A leading energy-saving mechanism in manufacturing is to be able to adapt/change the machine speed levels which exactly determines the energy consumption of the machines. Hence, in this study, the afore-mentioned framework is applied to the no-wait permutation flowshop scheduling problem (NWPFSP) which is a variant of classical permutation flowshop scheduling problems. However, it has various critical applications in industries such as chemical, pharmaceutical, food-processing, etc. This study proposes both mixed-integer linear programming (MILP) and constraint programming (CP) model formulations for the energy-efficient bi-objective no-wait permutation flowshop scheduling problems (NWPFSPs) considering the total tardiness and the total energy consumption minimization simultaneously. This problem treats total energy consumption as a second objective. Thus, the trade-off between the total tardiness – a service level measurement indicator – and the total energy consumption – a sustainability level indicator – is analyzed in this study. Furthermore, due to the NP-hardness nature of the first objective of the problem, a novel multi-objective discrete artificial bee colony algorithm (MO-DABC), a traditional multi-objective genetic algorithm (MO-GA) and a variant of multi-objective genetic algorithm with a local search (MO-GALS) are proposed for the bi-objective no-wait permutation flowshop scheduling problem. Besides the proposed algorithms are compared with the multi-objective energy-efficient algorithms from the literature. Consequently, a comprehensive comparative metaheuristic analysis is carried out. The computational results indicate that the proposed MO-DABC algorithm outperforms MILP, CP, MO-GA, MO-GALS, and algorithms from the literature in terms of both cardinality and quality of the solutions. The powerful results of this study show that the proposed models and algorithms can be adapted to other energy-efficient scheduling problems such as no-idle flowshop, blocking flowshop and job-shop scheduling problems or to other higher-level integrated manufacturing problems." @default.
- W3014645106 created "2020-04-10" @default.
- W3014645106 creator A5004273831 @default.
- W3014645106 creator A5017886286 @default.
- W3014645106 creator A5022695566 @default.
- W3014645106 creator A5031968418 @default.
- W3014645106 date "2020-07-01" @default.
- W3014645106 modified "2023-09-23" @default.
- W3014645106 title "An energy-efficient bi-objective no-wait permutation flowshop scheduling problem to minimize total tardiness and total energy consumption" @default.
- W3014645106 cites W1416338368 @default.
- W3014645106 cites W1484318938 @default.
- W3014645106 cites W1488422606 @default.
- W3014645106 cites W1965334058 @default.
- W3014645106 cites W1966073492 @default.
- W3014645106 cites W1966577583 @default.
- W3014645106 cites W1968478474 @default.
- W3014645106 cites W1971212752 @default.
- W3014645106 cites W1972819258 @default.
- W3014645106 cites W1984642568 @default.
- W3014645106 cites W1987790292 @default.
- W3014645106 cites W1993084500 @default.
- W3014645106 cites W1993798486 @default.
- W3014645106 cites W1996800651 @default.
- W3014645106 cites W2001612470 @default.
- W3014645106 cites W2003584395 @default.
- W3014645106 cites W2006751452 @default.
- W3014645106 cites W2006982701 @default.
- W3014645106 cites W2011008176 @default.
- W3014645106 cites W2013827997 @default.
- W3014645106 cites W2015821196 @default.
- W3014645106 cites W2020381385 @default.
- W3014645106 cites W2021589634 @default.
- W3014645106 cites W2022506544 @default.
- W3014645106 cites W2026662237 @default.
- W3014645106 cites W2039385547 @default.
- W3014645106 cites W2040549643 @default.
- W3014645106 cites W2043557499 @default.
- W3014645106 cites W2044226154 @default.
- W3014645106 cites W2052272326 @default.
- W3014645106 cites W2057820187 @default.
- W3014645106 cites W2066555597 @default.
- W3014645106 cites W2070282649 @default.
- W3014645106 cites W2084576452 @default.
- W3014645106 cites W2089254430 @default.
- W3014645106 cites W2090069860 @default.
- W3014645106 cites W2090812374 @default.
- W3014645106 cites W2092466445 @default.
- W3014645106 cites W2108926148 @default.
- W3014645106 cites W2126105956 @default.
- W3014645106 cites W2128130220 @default.
- W3014645106 cites W2149884725 @default.
- W3014645106 cites W2156391157 @default.
- W3014645106 cites W2166928920 @default.
- W3014645106 cites W2189779582 @default.
- W3014645106 cites W2292872279 @default.
- W3014645106 cites W2301751069 @default.
- W3014645106 cites W2515915570 @default.
- W3014645106 cites W2539426768 @default.
- W3014645106 cites W2562149778 @default.
- W3014645106 cites W2568704089 @default.
- W3014645106 cites W2593598244 @default.
- W3014645106 cites W2804015508 @default.
- W3014645106 cites W2846336637 @default.
- W3014645106 cites W2878450471 @default.
- W3014645106 cites W2912744965 @default.
- W3014645106 cites W2913533133 @default.
- W3014645106 cites W2924465770 @default.
- W3014645106 cites W2932983919 @default.
- W3014645106 cites W2951871563 @default.
- W3014645106 cites W2972267365 @default.
- W3014645106 cites W3004444536 @default.
- W3014645106 cites W3005271088 @default.
- W3014645106 cites W826685547 @default.
- W3014645106 cites W867003385 @default.
- W3014645106 cites W1970140199 @default.
- W3014645106 doi "https://doi.org/10.1016/j.cie.2020.106431" @default.
- W3014645106 hasPublicationYear "2020" @default.
- W3014645106 type Work @default.
- W3014645106 sameAs 3014645106 @default.
- W3014645106 citedByCount "29" @default.
- W3014645106 countsByYear W30146451062020 @default.
- W3014645106 countsByYear W30146451062021 @default.
- W3014645106 countsByYear W30146451062022 @default.
- W3014645106 countsByYear W30146451062023 @default.
- W3014645106 crossrefType "journal-article" @default.
- W3014645106 hasAuthorship W3014645106A5004273831 @default.
- W3014645106 hasAuthorship W3014645106A5017886286 @default.
- W3014645106 hasAuthorship W3014645106A5022695566 @default.
- W3014645106 hasAuthorship W3014645106A5031968418 @default.
- W3014645106 hasConcept C105795698 @default.
- W3014645106 hasConcept C107551265 @default.
- W3014645106 hasConcept C111919701 @default.
- W3014645106 hasConcept C119599485 @default.
- W3014645106 hasConcept C121332964 @default.
- W3014645106 hasConcept C126255220 @default.
- W3014645106 hasConcept C127413603 @default.
- W3014645106 hasConcept C15744967 @default.
- W3014645106 hasConcept C186370098 @default.