Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014663442> ?p ?o ?g. }
- W3014663442 endingPage "880" @default.
- W3014663442 startingPage "870" @default.
- W3014663442 abstract "Abstract Background Distension of hollow organs is known to release adenosine triphosphate (ATP) from the lining epithelium, which triggers local responses and activates sensory nerves to convey information to the central nervous system. However, little is known regarding participation of ATP and mediators of ATP release, such as Pannexin 1 (Panx1) channels, in mechanisms of vaginal mechanosensory transduction and of changes imposed by diabetes and menopause, conditions associated with vaginal dysfunction and risk for impaired genital arousal. Aim To investigate if intravaginal mechanical stimulation triggers vaginal ATP release and if (a) this response involves Panx1 channels and (b) this response is altered in animal models of diabetes and menopause. Methods Diabetic Akita female mice were used as a type 1 diabetes (T1D) model and surgical castration (ovariectomy [OVX]) as a menopause model. Panx1-null mice were used to evaluate Panx1 participation in mechanosensitive vaginal ATP release. Vaginal washes were collected from anesthetized mice at baseline (non-stimulated) and at 5 minutes after intravaginal stimulation. For the OVX and Sham groups, samples were collected before surgery and at 4, 12, 22, 24, and 28 weeks after surgery. ATP levels in vaginal washes were measured using the luciferin-luciferase assay. Panx1 mRNA levels in vaginal epithelium were quantified by quantitative polymerase chain reaction. Outcomes The main outcome measures are quantification of mechanosensitive vaginal ATP release and evaluation of impact of Panx1 deletion, OVX, and T1D on this response. Results Intravaginal mechanical stimulation–induced vaginal ATP release was 84% lower in Panx1-null (P < .001) and 76% lower in diabetic (P < .0001) mice compared with controls and was reduced in a progressive and significant manner in OVX mice when compared with Sham. Panx1 mRNA expression in vaginal epithelium was 44% lower in diabetics than that in controls (P < .05) and 40% lower in OVX than that in the Sham (P < .05) group. Clinical Translation Panx1 downregulation and consequent attenuation of mechanosensitive vaginal responses may be implicated in mechanisms of female genital arousal disorder, thereby providing potential targets for novel therapies to manage this condition. Strengths & Limitations Using animal models, we demonstrated Panx1 involvement in mechanosensitive vaginal ATP release and effects of T1D and menopause on this response and on Panx1 expression. A limitation is that sex steroid hormone levels were not measured, precluding correlations and insights into mechanisms that may regulate Panx1 expression in the vaginal epithelium. Conclusions Panx1 channel is a component of the vaginal epithelial mechanosensory transduction system that is essential for proper vaginal response to mechanical stimulation and is targeted in T1D and menopause." @default.
- W3014663442 created "2020-04-10" @default.
- W3014663442 creator A5004188682 @default.
- W3014663442 creator A5031292369 @default.
- W3014663442 creator A5043722443 @default.
- W3014663442 creator A5050140314 @default.
- W3014663442 date "2020-03-31" @default.
- W3014663442 modified "2023-10-18" @default.
- W3014663442 title "Mechanosensitive Vaginal Epithelial Adenosine Triphosphate Release and Pannexin 1 Channels in Healthy, in Type 1 Diabetic, and in Surgically Castrated Female Mice" @default.
- W3014663442 cites W1512733937 @default.
- W3014663442 cites W1767633497 @default.
- W3014663442 cites W1914885977 @default.
- W3014663442 cites W1965759264 @default.
- W3014663442 cites W1966793235 @default.
- W3014663442 cites W1968236129 @default.
- W3014663442 cites W1973248802 @default.
- W3014663442 cites W1984963498 @default.
- W3014663442 cites W1990145008 @default.
- W3014663442 cites W1994129791 @default.
- W3014663442 cites W1998797780 @default.
- W3014663442 cites W2006061610 @default.
- W3014663442 cites W2014847032 @default.
- W3014663442 cites W2015942289 @default.
- W3014663442 cites W2017331982 @default.
- W3014663442 cites W2017612052 @default.
- W3014663442 cites W2019310006 @default.
- W3014663442 cites W2021924810 @default.
- W3014663442 cites W2029083566 @default.
- W3014663442 cites W2047432001 @default.
- W3014663442 cites W2051209680 @default.
- W3014663442 cites W2054233338 @default.
- W3014663442 cites W2061268836 @default.
- W3014663442 cites W2065155915 @default.
- W3014663442 cites W2070958204 @default.
- W3014663442 cites W2079841466 @default.
- W3014663442 cites W2083561187 @default.
- W3014663442 cites W2089300840 @default.
- W3014663442 cites W2094676087 @default.
- W3014663442 cites W2101859335 @default.
- W3014663442 cites W2115461505 @default.
- W3014663442 cites W2127651585 @default.
- W3014663442 cites W2137780990 @default.
- W3014663442 cites W2140158078 @default.
- W3014663442 cites W2141571472 @default.
- W3014663442 cites W2163578833 @default.
- W3014663442 cites W2289015321 @default.
- W3014663442 cites W2346358086 @default.
- W3014663442 cites W2809710056 @default.
- W3014663442 cites W4236243797 @default.
- W3014663442 cites W589980609 @default.
- W3014663442 cites W754139966 @default.
- W3014663442 doi "https://doi.org/10.1016/j.jsxm.2020.02.010" @default.
- W3014663442 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7188554" @default.
- W3014663442 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32241676" @default.
- W3014663442 hasPublicationYear "2020" @default.
- W3014663442 type Work @default.
- W3014663442 sameAs 3014663442 @default.
- W3014663442 citedByCount "1" @default.
- W3014663442 countsByYear W30146634422020 @default.
- W3014663442 crossrefType "journal-article" @default.
- W3014663442 hasAuthorship W3014663442A5004188682 @default.
- W3014663442 hasAuthorship W3014663442A5031292369 @default.
- W3014663442 hasAuthorship W3014663442A5043722443 @default.
- W3014663442 hasAuthorship W3014663442A5050140314 @default.
- W3014663442 hasBestOaLocation W30146634422 @default.
- W3014663442 hasConcept C126322002 @default.
- W3014663442 hasConcept C127992366 @default.
- W3014663442 hasConcept C134018914 @default.
- W3014663442 hasConcept C158157758 @default.
- W3014663442 hasConcept C170493617 @default.
- W3014663442 hasConcept C24998067 @default.
- W3014663442 hasConcept C2776991684 @default.
- W3014663442 hasConcept C2778562196 @default.
- W3014663442 hasConcept C2779564974 @default.
- W3014663442 hasConcept C2780228694 @default.
- W3014663442 hasConcept C4001165 @default.
- W3014663442 hasConcept C50254741 @default.
- W3014663442 hasConcept C555293320 @default.
- W3014663442 hasConcept C71924100 @default.
- W3014663442 hasConcept C79879829 @default.
- W3014663442 hasConcept C86803240 @default.
- W3014663442 hasConcept C95444343 @default.
- W3014663442 hasConceptScore W3014663442C126322002 @default.
- W3014663442 hasConceptScore W3014663442C127992366 @default.
- W3014663442 hasConceptScore W3014663442C134018914 @default.
- W3014663442 hasConceptScore W3014663442C158157758 @default.
- W3014663442 hasConceptScore W3014663442C170493617 @default.
- W3014663442 hasConceptScore W3014663442C24998067 @default.
- W3014663442 hasConceptScore W3014663442C2776991684 @default.
- W3014663442 hasConceptScore W3014663442C2778562196 @default.
- W3014663442 hasConceptScore W3014663442C2779564974 @default.
- W3014663442 hasConceptScore W3014663442C2780228694 @default.
- W3014663442 hasConceptScore W3014663442C4001165 @default.
- W3014663442 hasConceptScore W3014663442C50254741 @default.
- W3014663442 hasConceptScore W3014663442C555293320 @default.
- W3014663442 hasConceptScore W3014663442C71924100 @default.
- W3014663442 hasConceptScore W3014663442C79879829 @default.
- W3014663442 hasConceptScore W3014663442C86803240 @default.