Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014698683> ?p ?o ?g. }
- W3014698683 endingPage "6224" @default.
- W3014698683 startingPage "6206" @default.
- W3014698683 abstract "In this paper, we applied a novel method for the detection of Alzheimer's disease (AD) based on a structural magnetic resonance imaging (sMRI) dataset. Specifically, the method involved a new classification algorithm of machine learning, named Generalized Split Linearized Bregman Iteration (GSplit LBI). It combines logistic regression and structural sparsity regularizations. In the study, 57 AD patients and 47 normal controls (NCs) were enrolled. We first extracted the entire brain gray matter volume values of all subjects and then used GSplit LBI to build a predictive classification model with a 10-fold full cross-validation method. The model accuracy achieved 90.44%. To further verify which voxels in the dataset have greater impact on the prediction results, we ranked the weight parameters and obtained the top 6% of the model parameters. To verify the generalization of model prediction and the stability of feature selection, we performed a cross-test on the Alzheimer's Disease Neuroimaging Initiative (ADNI) and a Chinese dataset and achieved good performances on different cohorts. Conclusively, based on the sMRI dataset, our algorithm not only had good performance in a local cohort with high accuracy but also had good generalization of model prediction and stability of feature selection in different cohorts." @default.
- W3014698683 created "2020-04-10" @default.
- W3014698683 creator A5008847770 @default.
- W3014698683 creator A5035352293 @default.
- W3014698683 creator A5037105069 @default.
- W3014698683 creator A5047965752 @default.
- W3014698683 creator A5048548439 @default.
- W3014698683 creator A5055368283 @default.
- W3014698683 creator A5056785665 @default.
- W3014698683 creator A5062357883 @default.
- W3014698683 creator A5073285625 @default.
- W3014698683 creator A5076752960 @default.
- W3014698683 date "2020-04-05" @default.
- W3014698683 modified "2023-09-26" @default.
- W3014698683 title "Application of Generalized Split Linearized Bregman Iteration algorithm for Alzheimer's disease prediction" @default.
- W3014698683 cites W1545850453 @default.
- W3014698683 cites W1550721541 @default.
- W3014698683 cites W1596552964 @default.
- W3014698683 cites W1715858500 @default.
- W3014698683 cites W1968065637 @default.
- W3014698683 cites W1970300450 @default.
- W3014698683 cites W1970488531 @default.
- W3014698683 cites W1976270130 @default.
- W3014698683 cites W1979631864 @default.
- W3014698683 cites W1982031183 @default.
- W3014698683 cites W1987909254 @default.
- W3014698683 cites W1990689754 @default.
- W3014698683 cites W1991952617 @default.
- W3014698683 cites W1994299960 @default.
- W3014698683 cites W1997194251 @default.
- W3014698683 cites W1998025977 @default.
- W3014698683 cites W1999852284 @default.
- W3014698683 cites W2002001569 @default.
- W3014698683 cites W2004421347 @default.
- W3014698683 cites W2004856335 @default.
- W3014698683 cites W2007572953 @default.
- W3014698683 cites W2017022537 @default.
- W3014698683 cites W2017474477 @default.
- W3014698683 cites W2019024625 @default.
- W3014698683 cites W2036142047 @default.
- W3014698683 cites W2037959100 @default.
- W3014698683 cites W2038003677 @default.
- W3014698683 cites W2038899746 @default.
- W3014698683 cites W2044329307 @default.
- W3014698683 cites W2052742260 @default.
- W3014698683 cites W2054756808 @default.
- W3014698683 cites W2058046532 @default.
- W3014698683 cites W2065815171 @default.
- W3014698683 cites W2067140282 @default.
- W3014698683 cites W2087964262 @default.
- W3014698683 cites W2093602450 @default.
- W3014698683 cites W2101282194 @default.
- W3014698683 cites W2104230802 @default.
- W3014698683 cites W2106080677 @default.
- W3014698683 cites W2106931873 @default.
- W3014698683 cites W2107564884 @default.
- W3014698683 cites W2119502028 @default.
- W3014698683 cites W2133463714 @default.
- W3014698683 cites W2135028448 @default.
- W3014698683 cites W2142367912 @default.
- W3014698683 cites W2147619660 @default.
- W3014698683 cites W2151393950 @default.
- W3014698683 cites W2151765069 @default.
- W3014698683 cites W2155164847 @default.
- W3014698683 cites W2155298532 @default.
- W3014698683 cites W2156533577 @default.
- W3014698683 cites W2157110881 @default.
- W3014698683 cites W2157633021 @default.
- W3014698683 cites W2167638846 @default.
- W3014698683 cites W2179914359 @default.
- W3014698683 cites W2192985207 @default.
- W3014698683 cites W2323415131 @default.
- W3014698683 cites W2569531558 @default.
- W3014698683 cites W2593468621 @default.
- W3014698683 cites W2606546398 @default.
- W3014698683 cites W2620135797 @default.
- W3014698683 cites W2763750454 @default.
- W3014698683 cites W2950680182 @default.
- W3014698683 doi "https://doi.org/10.18632/aging.103017" @default.
- W3014698683 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7185109" @default.
- W3014698683 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32248185" @default.
- W3014698683 hasPublicationYear "2020" @default.
- W3014698683 type Work @default.
- W3014698683 sameAs 3014698683 @default.
- W3014698683 citedByCount "5" @default.
- W3014698683 countsByYear W30146986832021 @default.
- W3014698683 countsByYear W30146986832022 @default.
- W3014698683 countsByYear W30146986832023 @default.
- W3014698683 crossrefType "journal-article" @default.
- W3014698683 hasAuthorship W3014698683A5008847770 @default.
- W3014698683 hasAuthorship W3014698683A5035352293 @default.
- W3014698683 hasAuthorship W3014698683A5037105069 @default.
- W3014698683 hasAuthorship W3014698683A5047965752 @default.
- W3014698683 hasAuthorship W3014698683A5048548439 @default.
- W3014698683 hasAuthorship W3014698683A5055368283 @default.
- W3014698683 hasAuthorship W3014698683A5056785665 @default.
- W3014698683 hasAuthorship W3014698683A5062357883 @default.
- W3014698683 hasAuthorship W3014698683A5073285625 @default.