Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014745623> ?p ?o ?g. }
- W3014745623 endingPage "64036" @default.
- W3014745623 startingPage "64028" @default.
- W3014745623 abstract "The practical driving cycle is of great significance in studying the control strategy of vehicles, and effective clustering of micro-trips is the key to obtaining the typical driving cycle. A novel and efficient method for constructing typical driving cycles is presented in this paper. First, by combining the preying behavior and random behavior of the artificial fish swarm algorithm (AFSA) with particle swarm optimization (PSO), a modified particle swarm optimization (MPSO) is proposed. By comparing the means and standard deviations of the optima, MPSO is verified as much more accurate and stable than PSO, AFSA, select particle swarm optimization (SPSO) and cross particle swarm optimization (CPSO) in the optimization calculation of four typical multi-modal benchmark functions. Second, by applying MPSO to optimize the k-means algorithm, the k-MPSO clustering algorithm is obtained. In the case of clustering the Iris standard data set, the average error rates of the k-means algorithm and k-MPSO clustering algorithm are 11.6% and 7.8%, respectively, which means that the k-MPSO clustering algorithm has a stronger searching ability. Finally, with the ECAN Tools software, real-world driving data that include thousands of micro-trips in Jinan are collected, and 19 representative characteristic parameters are selected to fully describe the driving conditions. After principal component analysis (PCA), the k-MPSO clustering algorithm method is applied to cluster the micro-trips into three classes and construct the typical driving cycle in Jinan." @default.
- W3014745623 created "2020-04-10" @default.
- W3014745623 creator A5004662931 @default.
- W3014745623 creator A5035639688 @default.
- W3014745623 creator A5039392522 @default.
- W3014745623 creator A5083784288 @default.
- W3014745623 creator A5085144065 @default.
- W3014745623 date "2020-01-01" @default.
- W3014745623 modified "2023-09-25" @default.
- W3014745623 title "A Novel k-MPSO Clustering Algorithm for the Construction of Typical Driving Cycles" @default.
- W3014745623 cites W118006420 @default.
- W3014745623 cites W1937288052 @default.
- W3014745623 cites W1978662634 @default.
- W3014745623 cites W1984277790 @default.
- W3014745623 cites W2002547186 @default.
- W3014745623 cites W2011921062 @default.
- W3014745623 cites W2040943733 @default.
- W3014745623 cites W2090588963 @default.
- W3014745623 cites W2098477891 @default.
- W3014745623 cites W2112670653 @default.
- W3014745623 cites W2133150655 @default.
- W3014745623 cites W2152195021 @default.
- W3014745623 cites W2158242120 @default.
- W3014745623 cites W2169245194 @default.
- W3014745623 cites W2294798173 @default.
- W3014745623 cites W2340195015 @default.
- W3014745623 cites W2407046298 @default.
- W3014745623 cites W2417893505 @default.
- W3014745623 cites W2586805622 @default.
- W3014745623 cites W2612141530 @default.
- W3014745623 cites W2613912370 @default.
- W3014745623 cites W2766207997 @default.
- W3014745623 cites W2789717563 @default.
- W3014745623 cites W2807251008 @default.
- W3014745623 cites W2901096225 @default.
- W3014745623 cites W2914857512 @default.
- W3014745623 cites W2938514468 @default.
- W3014745623 cites W2943227651 @default.
- W3014745623 cites W2962839664 @default.
- W3014745623 cites W2965010082 @default.
- W3014745623 cites W2968462207 @default.
- W3014745623 cites W2972155310 @default.
- W3014745623 cites W2976457931 @default.
- W3014745623 cites W2980294800 @default.
- W3014745623 cites W2981592639 @default.
- W3014745623 cites W4238805501 @default.
- W3014745623 cites W640462869 @default.
- W3014745623 doi "https://doi.org/10.1109/access.2020.2985207" @default.
- W3014745623 hasPublicationYear "2020" @default.
- W3014745623 type Work @default.
- W3014745623 sameAs 3014745623 @default.
- W3014745623 citedByCount "11" @default.
- W3014745623 countsByYear W30147456232020 @default.
- W3014745623 countsByYear W30147456232021 @default.
- W3014745623 countsByYear W30147456232022 @default.
- W3014745623 countsByYear W30147456232023 @default.
- W3014745623 crossrefType "journal-article" @default.
- W3014745623 hasAuthorship W3014745623A5004662931 @default.
- W3014745623 hasAuthorship W3014745623A5035639688 @default.
- W3014745623 hasAuthorship W3014745623A5039392522 @default.
- W3014745623 hasAuthorship W3014745623A5083784288 @default.
- W3014745623 hasAuthorship W3014745623A5085144065 @default.
- W3014745623 hasBestOaLocation W30147456231 @default.
- W3014745623 hasConcept C109718341 @default.
- W3014745623 hasConcept C11413529 @default.
- W3014745623 hasConcept C122357587 @default.
- W3014745623 hasConcept C126255220 @default.
- W3014745623 hasConcept C13280743 @default.
- W3014745623 hasConcept C141934464 @default.
- W3014745623 hasConcept C154945302 @default.
- W3014745623 hasConcept C185798385 @default.
- W3014745623 hasConcept C205649164 @default.
- W3014745623 hasConcept C33923547 @default.
- W3014745623 hasConcept C41008148 @default.
- W3014745623 hasConcept C73555534 @default.
- W3014745623 hasConcept C85617194 @default.
- W3014745623 hasConceptScore W3014745623C109718341 @default.
- W3014745623 hasConceptScore W3014745623C11413529 @default.
- W3014745623 hasConceptScore W3014745623C122357587 @default.
- W3014745623 hasConceptScore W3014745623C126255220 @default.
- W3014745623 hasConceptScore W3014745623C13280743 @default.
- W3014745623 hasConceptScore W3014745623C141934464 @default.
- W3014745623 hasConceptScore W3014745623C154945302 @default.
- W3014745623 hasConceptScore W3014745623C185798385 @default.
- W3014745623 hasConceptScore W3014745623C205649164 @default.
- W3014745623 hasConceptScore W3014745623C33923547 @default.
- W3014745623 hasConceptScore W3014745623C41008148 @default.
- W3014745623 hasConceptScore W3014745623C73555534 @default.
- W3014745623 hasConceptScore W3014745623C85617194 @default.
- W3014745623 hasLocation W30147456231 @default.
- W3014745623 hasOpenAccess W3014745623 @default.
- W3014745623 hasPrimaryLocation W30147456231 @default.
- W3014745623 hasRelatedWork W1494790829 @default.
- W3014745623 hasRelatedWork W161551212 @default.
- W3014745623 hasRelatedWork W2028742169 @default.
- W3014745623 hasRelatedWork W2040412956 @default.
- W3014745623 hasRelatedWork W2164422526 @default.
- W3014745623 hasRelatedWork W2359483975 @default.