Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014766272> ?p ?o ?g. }
- W3014766272 endingPage "105484" @default.
- W3014766272 startingPage "105484" @default.
- W3014766272 abstract "A great challenge in osteoporosis clinical assessment is identifying patients at higher risk of hip fracture. Bone Mineral Density (BMD) measured by Dual-Energy X-Ray Absorptiometry (DXA) is the current gold-standard, but its classification accuracy is limited to 65%. DXA-based Finite Element (FE) models have been developed to predict the mechanical failure of the bone. Yet, their contribution has been modest. In this study, supervised machine learning (ML) is applied in conjunction with clinical and computationally driven mechanical attributes. Through this multi-technique approach, we aimed to obtain a predictive model that outperforms BMD and other clinical data alone, as well as to identify the best-learned ML classifier within a group of suitable algorithms. A total number of 137 postmenopausal women (81.4 ± 6.95 years) were included in the study and separated into a fracture group (n = 89) and a control group (n = 48). A semi-automatic and patient-specific DXA-based FE model was used to generate mechanical attributes, describing the geometry, the impact force, bone structure and mechanical response of the bone after a sideways-fall. After preprocessing the whole dataset, 19 attributes were selected as predictors. Support Vector Machine (SVM) with radial basis function (RBF), Logistic Regression, Shallow Neural Networks and Random Forest were tested through a comprehensive validation procedure to compare their predictive performance. Clinical attributes were used alone in another experimental setup for the sake of comparison. SVM was confirmed to generate the best-learned algorithm for both experimental setups, including 19 attributes and only clinical attributes. The first, generated the best-learned model and outperformed BMD by 14pp. The results suggests that this approach could be easily integrated for effective prediction of hip fracture without interrupting the actual clinical workflow." @default.
- W3014766272 created "2020-04-10" @default.
- W3014766272 creator A5017933810 @default.
- W3014766272 creator A5024127854 @default.
- W3014766272 creator A5059350277 @default.
- W3014766272 creator A5077441779 @default.
- W3014766272 creator A5091326243 @default.
- W3014766272 date "2020-09-01" @default.
- W3014766272 modified "2023-10-17" @default.
- W3014766272 title "Prediction of osteoporotic hip fracture in postmenopausal women through patient-specific FE analyses and machine learning" @default.
- W3014766272 cites W1635332130 @default.
- W3014766272 cites W1964678256 @default.
- W3014766272 cites W1967372102 @default.
- W3014766272 cites W1979145232 @default.
- W3014766272 cites W1985184665 @default.
- W3014766272 cites W1986748363 @default.
- W3014766272 cites W1994486302 @default.
- W3014766272 cites W1997501144 @default.
- W3014766272 cites W2005293336 @default.
- W3014766272 cites W2008135135 @default.
- W3014766272 cites W2011085754 @default.
- W3014766272 cites W2013848628 @default.
- W3014766272 cites W2017950984 @default.
- W3014766272 cites W2017982980 @default.
- W3014766272 cites W2019557602 @default.
- W3014766272 cites W2021522897 @default.
- W3014766272 cites W2022126601 @default.
- W3014766272 cites W2025454892 @default.
- W3014766272 cites W2032189326 @default.
- W3014766272 cites W2044064269 @default.
- W3014766272 cites W2067586128 @default.
- W3014766272 cites W2069030706 @default.
- W3014766272 cites W2069165386 @default.
- W3014766272 cites W2073813406 @default.
- W3014766272 cites W2076849404 @default.
- W3014766272 cites W2079459163 @default.
- W3014766272 cites W2080070499 @default.
- W3014766272 cites W2084189654 @default.
- W3014766272 cites W2088873760 @default.
- W3014766272 cites W2089968363 @default.
- W3014766272 cites W2090510711 @default.
- W3014766272 cites W2106504381 @default.
- W3014766272 cites W2109991971 @default.
- W3014766272 cites W2131296752 @default.
- W3014766272 cites W2140394084 @default.
- W3014766272 cites W2148849217 @default.
- W3014766272 cites W2162914501 @default.
- W3014766272 cites W2169119174 @default.
- W3014766272 cites W2178531585 @default.
- W3014766272 cites W2416259076 @default.
- W3014766272 cites W2506683073 @default.
- W3014766272 cites W2554381542 @default.
- W3014766272 cites W2564048851 @default.
- W3014766272 cites W2762044025 @default.
- W3014766272 cites W2773643754 @default.
- W3014766272 cites W2806079884 @default.
- W3014766272 cites W2890865904 @default.
- W3014766272 cites W2907875064 @default.
- W3014766272 cites W2970515075 @default.
- W3014766272 cites W4237189247 @default.
- W3014766272 doi "https://doi.org/10.1016/j.cmpb.2020.105484" @default.
- W3014766272 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32278980" @default.
- W3014766272 hasPublicationYear "2020" @default.
- W3014766272 type Work @default.
- W3014766272 sameAs 3014766272 @default.
- W3014766272 citedByCount "24" @default.
- W3014766272 countsByYear W30147662722020 @default.
- W3014766272 countsByYear W30147662722021 @default.
- W3014766272 countsByYear W30147662722022 @default.
- W3014766272 countsByYear W30147662722023 @default.
- W3014766272 crossrefType "journal-article" @default.
- W3014766272 hasAuthorship W3014766272A5017933810 @default.
- W3014766272 hasAuthorship W3014766272A5024127854 @default.
- W3014766272 hasAuthorship W3014766272A5059350277 @default.
- W3014766272 hasAuthorship W3014766272A5077441779 @default.
- W3014766272 hasAuthorship W3014766272A5091326243 @default.
- W3014766272 hasBestOaLocation W30147662722 @default.
- W3014766272 hasConcept C11413529 @default.
- W3014766272 hasConcept C119857082 @default.
- W3014766272 hasConcept C12267149 @default.
- W3014766272 hasConcept C134018914 @default.
- W3014766272 hasConcept C151956035 @default.
- W3014766272 hasConcept C154945302 @default.
- W3014766272 hasConcept C169258074 @default.
- W3014766272 hasConcept C2776541429 @default.
- W3014766272 hasConcept C2776886416 @default.
- W3014766272 hasConcept C34736171 @default.
- W3014766272 hasConcept C41008148 @default.
- W3014766272 hasConcept C71924100 @default.
- W3014766272 hasConceptScore W3014766272C11413529 @default.
- W3014766272 hasConceptScore W3014766272C119857082 @default.
- W3014766272 hasConceptScore W3014766272C12267149 @default.
- W3014766272 hasConceptScore W3014766272C134018914 @default.
- W3014766272 hasConceptScore W3014766272C151956035 @default.
- W3014766272 hasConceptScore W3014766272C154945302 @default.
- W3014766272 hasConceptScore W3014766272C169258074 @default.
- W3014766272 hasConceptScore W3014766272C2776541429 @default.
- W3014766272 hasConceptScore W3014766272C2776886416 @default.