Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014819301> ?p ?o ?g. }
- W3014819301 endingPage "1090" @default.
- W3014819301 startingPage "1077" @default.
- W3014819301 abstract "This study investigated the effects of terminal sterilization of polyvinyl alcohol (PVA) biomaterials using clinically translatable techniques, specifically ethylene oxide (EtO) and gamma (γ) irradiation. While a few studies have reported the possibility of sterilizing PVA with γ-radiation, the use of EtO sterilization of PVA requires additional study. PVA solutions were chemically crosslinked with trisodium trimetaphosphate and sodium hydroxide. The three experimental groups included untreated control, EtO, and γ-irradiation, which were tested for the degree of swelling and water content, and mechanical properties such as radial compliance, longitudinal tensile, minimum bend radius, burst pressure, and suture retention strength. In addition, samples were characterized with scanning electron microscopy, differential scanning calorimetry, X-ray photoelectron spectroscopy, and water contact angle measurements. Cell attachment was assessed using the endothelial cell line EA.hy926, and the sterilized PVA cytotoxicity was studied with a live/dead stain. Platelet and fibrin accumulation was measured using an ex vivo shunt baboon model. Finally, the immune responses of PVA implants were analyzed after a 21-day subcutaneous implantation in rats and a 30-day implantation in baboon. EtO sterilization reduced the PVA graft wall thickness, its degree of swelling, and water content compared with both γ-irradiated and untreated PVA. Moreover, EtO sterilization significantly reduced the radial compliance and increased Young's modulus. EtO did not change PVA hydrophilicity, while γ-irradiation increased the water contact angle of the PVA. Consequently, endothelial cell attachment on the EtO-sterilized PVA showed similar results to the untreated PVA, while cell attachment significantly improved on the γ-irradiated PVA. When exposing the PVA grafts to circulating whole blood, fibrin accumulation of EtO-sterilized PVA was found to be significantly lower than γ-irradiated PVA. The immune responses of γ-irradiated PVA, EtO-treated PVA, and untreated PVA were compared. Implanted EtO-treated PVA showed the least MAC387 reaction. The terminal sterilization methods in this study changed PVA hydrogel properties; nevertheless, based on the characterizations performed, both sterilization methods were suitable for sterilizing PVA. We concluded that EtO can be used as an alternative method to sterilize PVA hydrogel material. Polyvinyl alcohol (PVA) hydrogels have been used for a variety of tissue replacements, including neural, cardiac, meniscal, cartilage, muscle, pancreatic, and ocular applications. In addition, PVA can be made into a tubular shape and used as a small-diameter vascular graft. Ethylene oxide (EtO) is one of the Food and Drug Administration-approved methods for sterilization, but its effect on PVA has not been studied extensively. The outcome of this study provides the effects of EtO and γ-irradiation of PVA grafts on both the material properties and the in vivo responses, particularly for vascular applications. Knowledge of these effects may ultimately improve the success rate of PVA vascular grafts." @default.
- W3014819301 created "2020-04-10" @default.
- W3014819301 creator A5017420497 @default.
- W3014819301 creator A5028342142 @default.
- W3014819301 creator A5035678238 @default.
- W3014819301 creator A5060298375 @default.
- W3014819301 creator A5064525568 @default.
- W3014819301 creator A5071210838 @default.
- W3014819301 creator A5080324706 @default.
- W3014819301 creator A5085968217 @default.
- W3014819301 date "2020-10-01" @default.
- W3014819301 modified "2023-10-16" @default.
- W3014819301 title "Effect of Ethylene Oxide Sterilization on Polyvinyl Alcohol Hydrogel Compared with Gamma Radiation" @default.
- W3014819301 cites W1423754210 @default.
- W3014819301 cites W1583612174 @default.
- W3014819301 cites W1589618892 @default.
- W3014819301 cites W1965884297 @default.
- W3014819301 cites W1969207746 @default.
- W3014819301 cites W1980951135 @default.
- W3014819301 cites W1982532370 @default.
- W3014819301 cites W1985432847 @default.
- W3014819301 cites W1987060309 @default.
- W3014819301 cites W1989108915 @default.
- W3014819301 cites W1990879541 @default.
- W3014819301 cites W1991669272 @default.
- W3014819301 cites W1992166864 @default.
- W3014819301 cites W1996481646 @default.
- W3014819301 cites W1996926626 @default.
- W3014819301 cites W1997888058 @default.
- W3014819301 cites W2023238978 @default.
- W3014819301 cites W2028845232 @default.
- W3014819301 cites W2032338594 @default.
- W3014819301 cites W2038188031 @default.
- W3014819301 cites W2039484008 @default.
- W3014819301 cites W2044512869 @default.
- W3014819301 cites W2044525256 @default.
- W3014819301 cites W2045793307 @default.
- W3014819301 cites W2046990574 @default.
- W3014819301 cites W2056503139 @default.
- W3014819301 cites W2059050398 @default.
- W3014819301 cites W2061266741 @default.
- W3014819301 cites W2064757598 @default.
- W3014819301 cites W2071752411 @default.
- W3014819301 cites W2073106336 @default.
- W3014819301 cites W2073302050 @default.
- W3014819301 cites W2073976178 @default.
- W3014819301 cites W2075084573 @default.
- W3014819301 cites W2084610464 @default.
- W3014819301 cites W2086784154 @default.
- W3014819301 cites W2090837486 @default.
- W3014819301 cites W2097111022 @default.
- W3014819301 cites W2099896311 @default.
- W3014819301 cites W2111183284 @default.
- W3014819301 cites W2115899595 @default.
- W3014819301 cites W2123329217 @default.
- W3014819301 cites W2125112982 @default.
- W3014819301 cites W2135540451 @default.
- W3014819301 cites W2141584047 @default.
- W3014819301 cites W2150289384 @default.
- W3014819301 cites W2180070936 @default.
- W3014819301 cites W2275760084 @default.
- W3014819301 cites W2299775765 @default.
- W3014819301 cites W2405847408 @default.
- W3014819301 cites W2413741203 @default.
- W3014819301 cites W2417425499 @default.
- W3014819301 cites W2574473351 @default.
- W3014819301 cites W2580970567 @default.
- W3014819301 cites W2620435339 @default.
- W3014819301 cites W2631422450 @default.
- W3014819301 cites W2912381193 @default.
- W3014819301 cites W2918530202 @default.
- W3014819301 cites W2919694661 @default.
- W3014819301 cites W2942593186 @default.
- W3014819301 cites W2943910759 @default.
- W3014819301 cites W2993897104 @default.
- W3014819301 cites W350116150 @default.
- W3014819301 cites W4244523227 @default.
- W3014819301 doi "https://doi.org/10.1089/ten.tea.2020.0002" @default.
- W3014819301 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7580577" @default.
- W3014819301 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32264787" @default.
- W3014819301 hasPublicationYear "2020" @default.
- W3014819301 type Work @default.
- W3014819301 sameAs 3014819301 @default.
- W3014819301 citedByCount "16" @default.
- W3014819301 countsByYear W30148193012020 @default.
- W3014819301 countsByYear W30148193012021 @default.
- W3014819301 countsByYear W30148193012023 @default.
- W3014819301 crossrefType "journal-article" @default.
- W3014819301 hasAuthorship W3014819301A5017420497 @default.
- W3014819301 hasAuthorship W3014819301A5028342142 @default.
- W3014819301 hasAuthorship W3014819301A5035678238 @default.
- W3014819301 hasAuthorship W3014819301A5060298375 @default.
- W3014819301 hasAuthorship W3014819301A5064525568 @default.
- W3014819301 hasAuthorship W3014819301A5071210838 @default.
- W3014819301 hasAuthorship W3014819301A5080324706 @default.
- W3014819301 hasAuthorship W3014819301A5085968217 @default.
- W3014819301 hasBestOaLocation W30148193012 @default.
- W3014819301 hasConcept C111337013 @default.