Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014845147> ?p ?o ?g. }
- W3014845147 abstract "Abstract Early warning signals (EWS) identify systems approaching a critical transition, where the system undergoes a sudden change in state. For example, monitoring changes in variance or autocorrelation offers a computationally inexpensive method which can be used in real-time to assess when an infectious disease transitions to elimination. EWS have a promising potential to not only be used to monitor infectious diseases, but also to inform control policies to aid disease elimination. Previously, potential EWS have been identified for prevalence data, however the prevalence of a disease is often not known directly. In this work we identify EWS for incidence data, the standard data type collected by the Centers for Disease Control and Prevention (CDC) or World Health Organization (WHO). We show, through several examples, that EWS calculated on simulated incidence time series data exhibit vastly different behaviours to those previously studied on prevalence data. In particular, the variance displays a decreasing trend on the approach to disease elimination, contrary to that expected from critical slowing down theory; this could lead to unreliable indicators of elimination when calculated on real-world data. We derive analytical predictions which can be generalised for many epidemiological systems, and we support our theory with simulated studies of disease incidence. Additionally, we explore EWS calculated on the rate of incidence over time, a property which can be extracted directly from incidence data. We find that although incidence might not exhibit typical critical slowing down properties before a critical transition, the rate of incidence does, presenting a promising new data type for the application of statistical indicators. Author summary The threat posed by infectious diseases has a huge impact on our global society. It is therefore critical to monitor infectious diseases as new data become available during control campaigns. One obstacle in observing disease emergence or elimination is understanding what influences noise in the data and how this fluctuates when near to zero cases. The standard data type collected is the number of new cases per day/month/year but mathematical modellers often focus on data such as the total number of infectious people, due to its analytical properties. We have developed a methodology to monitor the standard type of data to inform whether a disease is approaching emergence or disease elimination. We have shown computationally how fluctuations change as disease data get closer towards a tipping point and our insights highlight how these observed changes can be strikingly different when calculated on different types of data." @default.
- W3014845147 created "2020-04-10" @default.
- W3014845147 creator A5001578642 @default.
- W3014845147 creator A5025150813 @default.
- W3014845147 creator A5072414039 @default.
- W3014845147 date "2020-04-02" @default.
- W3014845147 modified "2023-10-12" @default.
- W3014845147 title "Prospects for detecting early warning signals in discrete event sequence data: application to epidemiological incidence data" @default.
- W3014845147 cites W1498026065 @default.
- W3014845147 cites W1966512215 @default.
- W3014845147 cites W2010662787 @default.
- W3014845147 cites W2047586434 @default.
- W3014845147 cites W2050335144 @default.
- W3014845147 cites W2116199452 @default.
- W3014845147 cites W2123730929 @default.
- W3014845147 cites W2136498527 @default.
- W3014845147 cites W2146952198 @default.
- W3014845147 cites W2155653089 @default.
- W3014845147 cites W2157658472 @default.
- W3014845147 cites W2158678754 @default.
- W3014845147 cites W2166022262 @default.
- W3014845147 cites W2168653390 @default.
- W3014845147 cites W2169715400 @default.
- W3014845147 cites W2170330538 @default.
- W3014845147 cites W2171351474 @default.
- W3014845147 cites W2197033418 @default.
- W3014845147 cites W2235530650 @default.
- W3014845147 cites W2311999693 @default.
- W3014845147 cites W2529305849 @default.
- W3014845147 cites W2753470284 @default.
- W3014845147 cites W2790830327 @default.
- W3014845147 cites W2806697564 @default.
- W3014845147 cites W2888251577 @default.
- W3014845147 cites W2916148703 @default.
- W3014845147 cites W4239181501 @default.
- W3014845147 doi "https://doi.org/10.1101/2020.04.02.021576" @default.
- W3014845147 hasPublicationYear "2020" @default.
- W3014845147 type Work @default.
- W3014845147 sameAs 3014845147 @default.
- W3014845147 citedByCount "1" @default.
- W3014845147 countsByYear W30148451472022 @default.
- W3014845147 crossrefType "posted-content" @default.
- W3014845147 hasAuthorship W3014845147A5001578642 @default.
- W3014845147 hasAuthorship W3014845147A5025150813 @default.
- W3014845147 hasAuthorship W3014845147A5072414039 @default.
- W3014845147 hasBestOaLocation W30148451471 @default.
- W3014845147 hasConcept C105795698 @default.
- W3014845147 hasConcept C107130276 @default.
- W3014845147 hasConcept C121955636 @default.
- W3014845147 hasConcept C124101348 @default.
- W3014845147 hasConcept C142724271 @default.
- W3014845147 hasConcept C144133560 @default.
- W3014845147 hasConcept C149782125 @default.
- W3014845147 hasConcept C196083921 @default.
- W3014845147 hasConcept C2524010 @default.
- W3014845147 hasConcept C2779134260 @default.
- W3014845147 hasConcept C2779296788 @default.
- W3014845147 hasConcept C29825287 @default.
- W3014845147 hasConcept C33923547 @default.
- W3014845147 hasConcept C41008148 @default.
- W3014845147 hasConcept C5297727 @default.
- W3014845147 hasConcept C61511704 @default.
- W3014845147 hasConcept C71924100 @default.
- W3014845147 hasConcept C76155785 @default.
- W3014845147 hasConceptScore W3014845147C105795698 @default.
- W3014845147 hasConceptScore W3014845147C107130276 @default.
- W3014845147 hasConceptScore W3014845147C121955636 @default.
- W3014845147 hasConceptScore W3014845147C124101348 @default.
- W3014845147 hasConceptScore W3014845147C142724271 @default.
- W3014845147 hasConceptScore W3014845147C144133560 @default.
- W3014845147 hasConceptScore W3014845147C149782125 @default.
- W3014845147 hasConceptScore W3014845147C196083921 @default.
- W3014845147 hasConceptScore W3014845147C2524010 @default.
- W3014845147 hasConceptScore W3014845147C2779134260 @default.
- W3014845147 hasConceptScore W3014845147C2779296788 @default.
- W3014845147 hasConceptScore W3014845147C29825287 @default.
- W3014845147 hasConceptScore W3014845147C33923547 @default.
- W3014845147 hasConceptScore W3014845147C41008148 @default.
- W3014845147 hasConceptScore W3014845147C5297727 @default.
- W3014845147 hasConceptScore W3014845147C61511704 @default.
- W3014845147 hasConceptScore W3014845147C71924100 @default.
- W3014845147 hasConceptScore W3014845147C76155785 @default.
- W3014845147 hasLocation W30148451471 @default.
- W3014845147 hasLocation W30148451472 @default.
- W3014845147 hasLocation W30148451473 @default.
- W3014845147 hasOpenAccess W3014845147 @default.
- W3014845147 hasPrimaryLocation W30148451471 @default.
- W3014845147 hasRelatedWork W1517986332 @default.
- W3014845147 hasRelatedWork W1537260327 @default.
- W3014845147 hasRelatedWork W1987102941 @default.
- W3014845147 hasRelatedWork W1990861802 @default.
- W3014845147 hasRelatedWork W1997711437 @default.
- W3014845147 hasRelatedWork W2042537832 @default.
- W3014845147 hasRelatedWork W2070912370 @default.
- W3014845147 hasRelatedWork W2146852177 @default.
- W3014845147 hasRelatedWork W2408945642 @default.
- W3014845147 hasRelatedWork W4238047853 @default.
- W3014845147 isParatext "false" @default.
- W3014845147 isRetracted "false" @default.
- W3014845147 magId "3014845147" @default.