Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014865388> ?p ?o ?g. }
- W3014865388 endingPage "71218" @default.
- W3014865388 startingPage "71206" @default.
- W3014865388 abstract "In recent years, with the rapid development of wind power generation, some problems are gradually highlighted. At present, one of the essential methods to solve these problems is to predict wind speed. In this paper, a hybrid BRR-EEMD method is proposed for short-term wind speed prediction based on the Bayesian ridge regression prediction method and ensemble empirical mode decomposition. We use ensemble empirical mode decomposition of the hybrid method to decompose complex time series of wind speed into several relatively milder, more regular, and stable subsequences. Then each subsequence is carried out by using the Bayesian ridge regression method. The value of each subsequence is predicted by it. Finally, the value of multiple subsequences is fused to form the prediction results of the original complex time series of wind speed. In order to verify the proposed method comprehensively, this paper selects two data to test. According to the results, predicted values have shown higher accuracy compared with the various prediction methods. Therefore, the hybrid BRR-EEMD method is accurate and effective in predicting wind speed, which has practical significance and potential value." @default.
- W3014865388 created "2020-04-10" @default.
- W3014865388 creator A5055975855 @default.
- W3014865388 creator A5078012796 @default.
- W3014865388 date "2020-01-01" @default.
- W3014865388 modified "2023-10-07" @default.
- W3014865388 title "Hybrid Prediction Method for Wind Speed Combining Ensemble Empirical Mode Decomposition and Bayesian Ridge Regression" @default.
- W3014865388 cites W1495476169 @default.
- W3014865388 cites W1790870804 @default.
- W3014865388 cites W2007221293 @default.
- W3014865388 cites W2036218954 @default.
- W3014865388 cites W2039306928 @default.
- W3014865388 cites W2052059781 @default.
- W3014865388 cites W2058504886 @default.
- W3014865388 cites W2087282283 @default.
- W3014865388 cites W2102303403 @default.
- W3014865388 cites W2108207567 @default.
- W3014865388 cites W2113350326 @default.
- W3014865388 cites W2120390927 @default.
- W3014865388 cites W2124211189 @default.
- W3014865388 cites W2140594587 @default.
- W3014865388 cites W2147094811 @default.
- W3014865388 cites W2152921273 @default.
- W3014865388 cites W2155355176 @default.
- W3014865388 cites W2205533964 @default.
- W3014865388 cites W2294793161 @default.
- W3014865388 cites W2327910783 @default.
- W3014865388 cites W2329714387 @default.
- W3014865388 cites W2333175961 @default.
- W3014865388 cites W2344502317 @default.
- W3014865388 cites W2460410989 @default.
- W3014865388 cites W2523344829 @default.
- W3014865388 cites W2558069854 @default.
- W3014865388 cites W2588004706 @default.
- W3014865388 cites W2600488069 @default.
- W3014865388 cites W2603605794 @default.
- W3014865388 cites W2606392079 @default.
- W3014865388 cites W2737654582 @default.
- W3014865388 cites W2782324289 @default.
- W3014865388 cites W2782699141 @default.
- W3014865388 cites W2786778708 @default.
- W3014865388 cites W2805060551 @default.
- W3014865388 cites W2869000049 @default.
- W3014865388 cites W2883123181 @default.
- W3014865388 cites W2883436328 @default.
- W3014865388 cites W2890280274 @default.
- W3014865388 cites W2895830266 @default.
- W3014865388 cites W2909059409 @default.
- W3014865388 cites W2913323966 @default.
- W3014865388 cites W2913872388 @default.
- W3014865388 cites W2942641215 @default.
- W3014865388 cites W2945443120 @default.
- W3014865388 cites W2946824674 @default.
- W3014865388 cites W2947870382 @default.
- W3014865388 cites W2969005134 @default.
- W3014865388 cites W2972599842 @default.
- W3014865388 cites W2974181587 @default.
- W3014865388 cites W2991535802 @default.
- W3014865388 cites W2992093941 @default.
- W3014865388 cites W2993333239 @default.
- W3014865388 cites W3007203411 @default.
- W3014865388 doi "https://doi.org/10.1109/access.2020.2984020" @default.
- W3014865388 hasPublicationYear "2020" @default.
- W3014865388 type Work @default.
- W3014865388 sameAs 3014865388 @default.
- W3014865388 citedByCount "23" @default.
- W3014865388 countsByYear W30148653882020 @default.
- W3014865388 countsByYear W30148653882021 @default.
- W3014865388 countsByYear W30148653882022 @default.
- W3014865388 countsByYear W30148653882023 @default.
- W3014865388 crossrefType "journal-article" @default.
- W3014865388 hasAuthorship W3014865388A5055975855 @default.
- W3014865388 hasAuthorship W3014865388A5078012796 @default.
- W3014865388 hasBestOaLocation W30148653881 @default.
- W3014865388 hasConcept C105795698 @default.
- W3014865388 hasConcept C107673813 @default.
- W3014865388 hasConcept C111919701 @default.
- W3014865388 hasConcept C112633086 @default.
- W3014865388 hasConcept C11413529 @default.
- W3014865388 hasConcept C119599485 @default.
- W3014865388 hasConcept C119857082 @default.
- W3014865388 hasConcept C121332964 @default.
- W3014865388 hasConcept C124101348 @default.
- W3014865388 hasConcept C127413603 @default.
- W3014865388 hasConcept C134306372 @default.
- W3014865388 hasConcept C137877099 @default.
- W3014865388 hasConcept C138885662 @default.
- W3014865388 hasConcept C143724316 @default.
- W3014865388 hasConcept C151406439 @default.
- W3014865388 hasConcept C151730666 @default.
- W3014865388 hasConcept C153294291 @default.
- W3014865388 hasConcept C154945302 @default.
- W3014865388 hasConcept C161067210 @default.
- W3014865388 hasConcept C207390915 @default.
- W3014865388 hasConcept C25570617 @default.
- W3014865388 hasConcept C32277403 @default.
- W3014865388 hasConcept C33923547 @default.
- W3014865388 hasConcept C34388435 @default.