Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014879148> ?p ?o ?g. }
- W3014879148 endingPage "19767" @default.
- W3014879148 startingPage "19755" @default.
- W3014879148 abstract "Gas sensors based on hybrid materials of graphene oxide/metal oxide semiconductors are an effective way to improve sensor performance. In this paper, we demonstrate a high-performance nitric oxide (NO) gas sensor based on nitrogen-doped reduced graphene oxide/ZnO nanocrystals (N-rGO/ZnO) operating at a low work temperature. ZnO nanocrystals, with an average size of approximately 5 nm, can be uniformly and compactly anchored on the surface of N-rGO using a facile two-step hydrothermal synthesis with an appropriate amount of ammonia as the nitrogen source. The sensor based on the N-rGO/ZnO composite with 0.3 mL of ammonia (N-rGO/ZnO-0.3), in comparison with N-rGO/ZnO with different amounts of ammonia, N-rGO, and rGO/ZnO, exhibited a significantly higher sensitivity (S = Rg/Ra) at the parts per billion (ppb) level for NO gas at 90 °C. The maximum sensitivity at 800 ppb NO was approximately 22, with much faster response and recovery times. In addition, the N-rGO/ZnO-0.3 sensor revealed great stability, a low detection limit of 100 ppb, and an excellent selectivity toward NO versus other gases (NO2, H2, CO, NH3, and CH4), especially at the ppb level. More interestingly, when exposed to oxidizing and reducing gases, unlike conventional semiconductor sensitive materials with resistances that normally change in the opposite direction, only the increase in the resistance is surprisingly and incomprehensibly observed for the N-rGO/ZnO-0.3 sensor. The peculiar sensing behaviors cannot be explained by the conventional theory of the adsorption process, redox reactions on the surfaces, and the well-defined p–n junction between N-rGO and ZnO, originating from the chemical bonding of Zn–C. We propose here for the first time that switchable contribution from dual-conduction paths including the corresponding ZnO channel with the p–n junction and the corresponding N-rGO channel to the sensitivity may exist in the interaction between gases and N-rGO/ZnO-0.3 material. When an oxidizing gas (such as NO) is exposed to the N-rGO/ZnO-0.3 sensor, the contribution from the conductive channel of ZnO nanoparticles and the p–n junction to the sensitivity is dominant. On the contrary, as for a reducing gas (such as H2), the contribution alters to the N-rGO channel as the dominating mode for sensitivity. For gas-sensing behavior of the NGZ-0.1 and NGZ-0.5 sensors, there is only one conduction path from the N-rGO channel for the sensitivity. The model of switchable dual-conduction paths has addressed the mysterious response observed for different gases, which may be utilized to enlighten the understanding of other application problems in nanoscale hybrid materials with a heterogeneous structure." @default.
- W3014879148 created "2020-04-10" @default.
- W3014879148 creator A5008456036 @default.
- W3014879148 creator A5008683048 @default.
- W3014879148 creator A5020427297 @default.
- W3014879148 creator A5031328003 @default.
- W3014879148 creator A5036843378 @default.
- W3014879148 creator A5039174324 @default.
- W3014879148 creator A5044376023 @default.
- W3014879148 creator A5045571995 @default.
- W3014879148 creator A5051997690 @default.
- W3014879148 creator A5059865427 @default.
- W3014879148 creator A5072895512 @default.
- W3014879148 creator A5089535109 @default.
- W3014879148 creator A5090691485 @default.
- W3014879148 creator A5091685833 @default.
- W3014879148 date "2020-04-03" @default.
- W3014879148 modified "2023-09-29" @default.
- W3014879148 title "Observation of Switchable Dual-Conductive Channels and Related Nitric Oxide Gas-Sensing Properties in the N-rGO/ZnO Heterogeneous Structure" @default.
- W3014879148 cites W1569457573 @default.
- W3014879148 cites W1803508823 @default.
- W3014879148 cites W1964772916 @default.
- W3014879148 cites W1972548120 @default.
- W3014879148 cites W1973975024 @default.
- W3014879148 cites W1976472331 @default.
- W3014879148 cites W1988502731 @default.
- W3014879148 cites W1997057014 @default.
- W3014879148 cites W1999860657 @default.
- W3014879148 cites W2000890169 @default.
- W3014879148 cites W2014935324 @default.
- W3014879148 cites W2017079738 @default.
- W3014879148 cites W2018566947 @default.
- W3014879148 cites W2020762221 @default.
- W3014879148 cites W2023233160 @default.
- W3014879148 cites W2029253115 @default.
- W3014879148 cites W2030275853 @default.
- W3014879148 cites W2031670446 @default.
- W3014879148 cites W2038726293 @default.
- W3014879148 cites W2050224320 @default.
- W3014879148 cites W2050591195 @default.
- W3014879148 cites W2052916822 @default.
- W3014879148 cites W2055294269 @default.
- W3014879148 cites W2057330747 @default.
- W3014879148 cites W2058122340 @default.
- W3014879148 cites W2058272047 @default.
- W3014879148 cites W2058820210 @default.
- W3014879148 cites W2063267408 @default.
- W3014879148 cites W2070902743 @default.
- W3014879148 cites W2072424142 @default.
- W3014879148 cites W2073540615 @default.
- W3014879148 cites W2074880343 @default.
- W3014879148 cites W2095211759 @default.
- W3014879148 cites W2105031224 @default.
- W3014879148 cites W2129729573 @default.
- W3014879148 cites W2135479172 @default.
- W3014879148 cites W2135851621 @default.
- W3014879148 cites W2136334331 @default.
- W3014879148 cites W2140746165 @default.
- W3014879148 cites W2146278879 @default.
- W3014879148 cites W2156575365 @default.
- W3014879148 cites W2157430977 @default.
- W3014879148 cites W2244159035 @default.
- W3014879148 cites W2262097640 @default.
- W3014879148 cites W2285403976 @default.
- W3014879148 cites W2317359908 @default.
- W3014879148 cites W2323785349 @default.
- W3014879148 cites W2329893584 @default.
- W3014879148 cites W2335413545 @default.
- W3014879148 cites W2495645445 @default.
- W3014879148 cites W2559676790 @default.
- W3014879148 cites W2561520912 @default.
- W3014879148 cites W2586301310 @default.
- W3014879148 cites W2624864956 @default.
- W3014879148 cites W2735478570 @default.
- W3014879148 cites W2753196723 @default.
- W3014879148 cites W2768582580 @default.
- W3014879148 cites W2799739974 @default.
- W3014879148 cites W2903313058 @default.
- W3014879148 cites W2962733516 @default.
- W3014879148 cites W4252534768 @default.
- W3014879148 cites W567459572 @default.
- W3014879148 doi "https://doi.org/10.1021/acsami.9b20776" @default.
- W3014879148 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32242657" @default.
- W3014879148 hasPublicationYear "2020" @default.
- W3014879148 type Work @default.
- W3014879148 sameAs 3014879148 @default.
- W3014879148 citedByCount "37" @default.
- W3014879148 countsByYear W30148791482020 @default.
- W3014879148 countsByYear W30148791482021 @default.
- W3014879148 countsByYear W30148791482022 @default.
- W3014879148 countsByYear W30148791482023 @default.
- W3014879148 crossrefType "journal-article" @default.
- W3014879148 hasAuthorship W3014879148A5008456036 @default.
- W3014879148 hasAuthorship W3014879148A5008683048 @default.
- W3014879148 hasAuthorship W3014879148A5020427297 @default.
- W3014879148 hasAuthorship W3014879148A5031328003 @default.
- W3014879148 hasAuthorship W3014879148A5036843378 @default.
- W3014879148 hasAuthorship W3014879148A5039174324 @default.