Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014893747> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W3014893747 abstract "Air pollution is considered one of the biggest health threats after it has become the fourth leading cause of death in the world. According to the Health Effect Institute (HEI), 95% of the world’s population is currently breathing polluted air. This paper highlights the importance of using machine learning algorithms to classify and predict air pollution based on collected real-time environmental data. These algorithms would help decision makers and responsible authorities to take action to alleviate this critical situation. Machine learning algorithms will be evaluated with offline data and real-time data which will be collected through pollution sensors as a model study. The obtained results revealed that Artificial Neural Network had the best performance and the highest accuracy among KNN, SVM, and Naive Bayes Classifier." @default.
- W3014893747 created "2020-04-10" @default.
- W3014893747 creator A5012262588 @default.
- W3014893747 creator A5028613898 @default.
- W3014893747 creator A5029949770 @default.
- W3014893747 creator A5083157719 @default.
- W3014893747 creator A5088767812 @default.
- W3014893747 creator A5089902344 @default.
- W3014893747 date "2020-01-01" @default.
- W3014893747 modified "2023-09-24" @default.
- W3014893747 title "Air Quality Monitoring and Classification Using Machine Learning" @default.
- W3014893747 cites W2101132353 @default.
- W3014893747 cites W2767894694 @default.
- W3014893747 cites W2771568419 @default.
- W3014893747 cites W2809035759 @default.
- W3014893747 cites W2894067432 @default.
- W3014893747 cites W956374238 @default.
- W3014893747 doi "https://doi.org/10.1007/978-981-15-4301-2_11" @default.
- W3014893747 hasPublicationYear "2020" @default.
- W3014893747 type Work @default.
- W3014893747 sameAs 3014893747 @default.
- W3014893747 citedByCount "0" @default.
- W3014893747 crossrefType "book-chapter" @default.
- W3014893747 hasAuthorship W3014893747A5012262588 @default.
- W3014893747 hasAuthorship W3014893747A5028613898 @default.
- W3014893747 hasAuthorship W3014893747A5029949770 @default.
- W3014893747 hasAuthorship W3014893747A5083157719 @default.
- W3014893747 hasAuthorship W3014893747A5088767812 @default.
- W3014893747 hasAuthorship W3014893747A5089902344 @default.
- W3014893747 hasConcept C119857082 @default.
- W3014893747 hasConcept C12267149 @default.
- W3014893747 hasConcept C124101348 @default.
- W3014893747 hasConcept C126314574 @default.
- W3014893747 hasConcept C153294291 @default.
- W3014893747 hasConcept C154945302 @default.
- W3014893747 hasConcept C178790620 @default.
- W3014893747 hasConcept C185592680 @default.
- W3014893747 hasConcept C205649164 @default.
- W3014893747 hasConcept C41008148 @default.
- W3014893747 hasConcept C50644808 @default.
- W3014893747 hasConcept C52001869 @default.
- W3014893747 hasConcept C559116025 @default.
- W3014893747 hasConcept C95623464 @default.
- W3014893747 hasConceptScore W3014893747C119857082 @default.
- W3014893747 hasConceptScore W3014893747C12267149 @default.
- W3014893747 hasConceptScore W3014893747C124101348 @default.
- W3014893747 hasConceptScore W3014893747C126314574 @default.
- W3014893747 hasConceptScore W3014893747C153294291 @default.
- W3014893747 hasConceptScore W3014893747C154945302 @default.
- W3014893747 hasConceptScore W3014893747C178790620 @default.
- W3014893747 hasConceptScore W3014893747C185592680 @default.
- W3014893747 hasConceptScore W3014893747C205649164 @default.
- W3014893747 hasConceptScore W3014893747C41008148 @default.
- W3014893747 hasConceptScore W3014893747C50644808 @default.
- W3014893747 hasConceptScore W3014893747C52001869 @default.
- W3014893747 hasConceptScore W3014893747C559116025 @default.
- W3014893747 hasConceptScore W3014893747C95623464 @default.
- W3014893747 hasLocation W30148937471 @default.
- W3014893747 hasOpenAccess W3014893747 @default.
- W3014893747 hasPrimaryLocation W30148937471 @default.
- W3014893747 hasRelatedWork W11389402 @default.
- W3014893747 hasRelatedWork W13034104 @default.
- W3014893747 hasRelatedWork W1678066 @default.
- W3014893747 hasRelatedWork W482721 @default.
- W3014893747 hasRelatedWork W621929 @default.
- W3014893747 hasRelatedWork W6552940 @default.
- W3014893747 hasRelatedWork W6680660 @default.
- W3014893747 hasRelatedWork W728297 @default.
- W3014893747 hasRelatedWork W7465187 @default.
- W3014893747 hasRelatedWork W6520261 @default.
- W3014893747 isParatext "false" @default.
- W3014893747 isRetracted "false" @default.
- W3014893747 magId "3014893747" @default.
- W3014893747 workType "book-chapter" @default.