Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014900725> ?p ?o ?g. }
- W3014900725 endingPage "719" @default.
- W3014900725 startingPage "708" @default.
- W3014900725 abstract "Dynamic positron emission tomography (PET) imaging can be used to quantify changes in synaptic concentrations of endogenous neurotransmitters during cognitive tasks or pharmacological interventions. Existing pharmacokinetic models, such as the linear parametric neurotransmitter PET (lp-ntPET) method, can be used to model the measured dynamic data and characterize small transient changes in neurotransmitter levels. Application of these models to the voxel level is challenging, however, due to the high levels of noise in dynamic data, leading to a high number of false-positive responses (i.e., low specificity). In this article, we investigated the suitability of machine learning algorithms (MLAs), including support vector machine (SVM) classifiers, shallow feedforward neural networks, convolutional neural networks (CNNs) and long short-term memory (LSTM) networks, to detect and classify transient changes in voxel-wise time-activity curves. We also investigated whether the reconstruction framework (post versus direct reconstruction) had any impact on the performance of the MLAs. We used computer simulations to generate dynamic PET data, representing a [ <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>11</sup> C]raclopride study, with known activation responses, across a wide range of noise levels. Different simulated data sets were used to train and test the MLAs across a range of noise levels and activation response magnitudes. Results showed the MLAs offered a large improvement in specificity without a corresponding decrease in sensitivity across all noise levels tested compared to direct application of the lp-ntPET model. They also offered a modest benefit over the currently accepted method (statistical F-test combined with cluster size analysis), for both 2-D+time data when incorporated within direct or post-reconstruction frameworks, and 4-D GATE data." @default.
- W3014900725 created "2020-04-10" @default.
- W3014900725 creator A5035972135 @default.
- W3014900725 creator A5039542183 @default.
- W3014900725 creator A5068006473 @default.
- W3014900725 date "2020-11-01" @default.
- W3014900725 modified "2023-10-16" @default.
- W3014900725 title "Classification of Neurotransmitter Response in Dynamic PET Data Using Machine Learning Approaches" @default.
- W3014900725 cites W2030773481 @default.
- W3014900725 cites W2054837723 @default.
- W3014900725 cites W2064208986 @default.
- W3014900725 cites W2103707010 @default.
- W3014900725 cites W2119665225 @default.
- W3014900725 cites W2133059825 @default.
- W3014900725 cites W2137787635 @default.
- W3014900725 cites W2138884296 @default.
- W3014900725 cites W2141703670 @default.
- W3014900725 cites W2162454286 @default.
- W3014900725 cites W2169459432 @default.
- W3014900725 cites W2530522569 @default.
- W3014900725 cites W2588978745 @default.
- W3014900725 cites W2768901570 @default.
- W3014900725 cites W2900540287 @default.
- W3014900725 cites W2902433843 @default.
- W3014900725 cites W2903059017 @default.
- W3014900725 cites W2919115771 @default.
- W3014900725 cites W2932551630 @default.
- W3014900725 cites W3216855420 @default.
- W3014900725 doi "https://doi.org/10.1109/trpms.2020.2984259" @default.
- W3014900725 hasPublicationYear "2020" @default.
- W3014900725 type Work @default.
- W3014900725 sameAs 3014900725 @default.
- W3014900725 citedByCount "7" @default.
- W3014900725 countsByYear W30149007252020 @default.
- W3014900725 countsByYear W30149007252021 @default.
- W3014900725 crossrefType "journal-article" @default.
- W3014900725 hasAuthorship W3014900725A5035972135 @default.
- W3014900725 hasAuthorship W3014900725A5039542183 @default.
- W3014900725 hasAuthorship W3014900725A5068006473 @default.
- W3014900725 hasConcept C105795698 @default.
- W3014900725 hasConcept C115961682 @default.
- W3014900725 hasConcept C117251300 @default.
- W3014900725 hasConcept C119857082 @default.
- W3014900725 hasConcept C12267149 @default.
- W3014900725 hasConcept C153180895 @default.
- W3014900725 hasConcept C154945302 @default.
- W3014900725 hasConcept C15744967 @default.
- W3014900725 hasConcept C169760540 @default.
- W3014900725 hasConcept C2775842073 @default.
- W3014900725 hasConcept C2776219046 @default.
- W3014900725 hasConcept C2780062018 @default.
- W3014900725 hasConcept C2781069445 @default.
- W3014900725 hasConcept C33923547 @default.
- W3014900725 hasConcept C41008148 @default.
- W3014900725 hasConcept C50644808 @default.
- W3014900725 hasConcept C513476851 @default.
- W3014900725 hasConcept C529278444 @default.
- W3014900725 hasConcept C54170458 @default.
- W3014900725 hasConcept C81363708 @default.
- W3014900725 hasConcept C99498987 @default.
- W3014900725 hasConceptScore W3014900725C105795698 @default.
- W3014900725 hasConceptScore W3014900725C115961682 @default.
- W3014900725 hasConceptScore W3014900725C117251300 @default.
- W3014900725 hasConceptScore W3014900725C119857082 @default.
- W3014900725 hasConceptScore W3014900725C12267149 @default.
- W3014900725 hasConceptScore W3014900725C153180895 @default.
- W3014900725 hasConceptScore W3014900725C154945302 @default.
- W3014900725 hasConceptScore W3014900725C15744967 @default.
- W3014900725 hasConceptScore W3014900725C169760540 @default.
- W3014900725 hasConceptScore W3014900725C2775842073 @default.
- W3014900725 hasConceptScore W3014900725C2776219046 @default.
- W3014900725 hasConceptScore W3014900725C2780062018 @default.
- W3014900725 hasConceptScore W3014900725C2781069445 @default.
- W3014900725 hasConceptScore W3014900725C33923547 @default.
- W3014900725 hasConceptScore W3014900725C41008148 @default.
- W3014900725 hasConceptScore W3014900725C50644808 @default.
- W3014900725 hasConceptScore W3014900725C513476851 @default.
- W3014900725 hasConceptScore W3014900725C529278444 @default.
- W3014900725 hasConceptScore W3014900725C54170458 @default.
- W3014900725 hasConceptScore W3014900725C81363708 @default.
- W3014900725 hasConceptScore W3014900725C99498987 @default.
- W3014900725 hasFunder F4320334704 @default.
- W3014900725 hasIssue "6" @default.
- W3014900725 hasLocation W30149007251 @default.
- W3014900725 hasOpenAccess W3014900725 @default.
- W3014900725 hasPrimaryLocation W30149007251 @default.
- W3014900725 hasRelatedWork W2016678309 @default.
- W3014900725 hasRelatedWork W2026866239 @default.
- W3014900725 hasRelatedWork W2031360672 @default.
- W3014900725 hasRelatedWork W2043617849 @default.
- W3014900725 hasRelatedWork W2048901589 @default.
- W3014900725 hasRelatedWork W2092745895 @default.
- W3014900725 hasRelatedWork W2144220495 @default.
- W3014900725 hasRelatedWork W2146901380 @default.
- W3014900725 hasRelatedWork W2242995564 @default.
- W3014900725 hasRelatedWork W4253984268 @default.
- W3014900725 hasVolume "4" @default.
- W3014900725 isParatext "false" @default.