Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014920290> ?p ?o ?g. }
- W3014920290 endingPage "387" @default.
- W3014920290 startingPage "385" @default.
- W3014920290 abstract "Future MicrobiologyVol. 15, No. 6 EditorialNanocytotoxicity using matrix-assisted laser desorption ionization mass spectrometryHani Nasser AbdelhamidHani Nasser Abdelhamid *Author for correspondence: E-mail Address: hany.abdelhamid@aun.edu.eghttps://orcid.org/0000-0002-3106-8302Advanced Multifunctional Materials Laboratory, Department of Chemistry, Assiut University, Assiut 71516, EgyptSearch for more papers by this authorPublished Online:6 Apr 2020https://doi.org/10.2217/fmb-2019-0260AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInReddit View articleKeywords: antibacterialsmatrix-assisted laser desorption ionization mass spectrometrynanocytotoxicitynanomedicineReferences1. Sekyere JO, Asante J. Emerging mechanisms of antimicrobial resistance in bacteria and fungi: advances in the era of genomics. Future Microbiol. 13(2), 241–262 (2018).Link, CAS, Google Scholar2. Rebrošová K, Šiler M, Samek O et al. Identification of ability to form biofilm in Candida parapsilosis and Staphylococcus epidermidis by Raman spectroscopy. Future Microbiol. 14(6), 509–517 (2019).Link, CAS, Google Scholar3. Sauer S, Kliem M. Mass spectrometry tools for the classification and identification of bacteria. Nat. Rev. Microbiol. 8(1), 74–82 (2010).Crossref, Medline, CAS, Google Scholar4. Abdelhamid HN, Wu H-F. Multifunctional graphene magnetic nanosheet decorated with chitosan for highly sensitive detection of pathogenic bacteria. J. Mater. Chem. B 1(32), 3950–3961 (2013).Crossref, Medline, CAS, Google Scholar5. Shahnawaz Khan M, Abdelhamid HN, Wu H-F. Near infrared (NIR) laser mediated surface activation of graphene oxide nanoflakes for efficient antibacterial, antifungal and wound healing treatment. Colloids Surf. B. Biointerfaces 127C, 281–291 (2015).Crossref, Google Scholar6. Wu H-F, Gopal J, Abdelhamid HN, Hasan N. Quantum dot applications endowing novelty to analytical proteomics. Proteomics 12(19–20), 2949–2961 (2012).Crossref, Medline, CAS, Google Scholar7. Abdelhamid HN, Wu H-F. A method to detect metal-drug complexes and their interactions with pathogenic bacteria via graphene nanosheet assist laser desorption/ionization mass spectrometry and biosensors. Anal. Chim. Acta 751, 94–104 (2012).Crossref, Medline, CAS, Google Scholar8. Banerjee T, Shelby T, Santra S. How can nanosensors detect bacterial contamination before it ever reaches the dinner table? Future Microbiol. 12(2), 97–100 (2017).Link, CAS, Google Scholar9. Abdelhamid HN, Wu H-F. Soft ionization of metallo-mefenamic using electrospray ionization mass spectrometry. Mass Spectrom. Lett. 6(2), 43–47 (2015).Crossref, CAS, Google Scholar10. Abdelhamid HN. Nanoparticle-based surface assisted laser desorption ionization mass spectrometry: a review. Microchim. Acta 186(10), 682 (2019).Crossref, Medline, Google Scholar11. Abdelhamid HN. Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes. Microchim. Acta. 185(3), 200 (2018).Crossref, Medline, Google Scholar12. Abdelhamid HN, Lin YC, Wu H-F. Magnetic nanoparticle modified chitosan for surface enhanced laser desorption/ionization mass spectrometry of surfactants. RSC Adv. 7(66), 41585–41592 (2017).Crossref, CAS, Google Scholar13. Kumaran S, Abdelhamid HN, Wu H-F. Quantification analysis of protein and mycelium contents upon inhibition of melanin for: Aspergillus Niger: A study of matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). RSC Adv. 7(48), 30289–30294 (2017).Crossref, CAS, Google Scholar14. Neonakis IK, Spandidos DA. MALDI-TOF mass spectrometry-based direct-on-target microdroplet growth assay: a novel assay for susceptibility testing and beyond. Future Microbiol. 14(9), 729–731 (2019).Link, CAS, Google Scholar15. Abdelhamid HN. Surfactant assisted synthesis of hierarchical porous metal-organic frameworks nanosheets. Nanotechnology 30(43), 435601 (2019).Crossref, Medline, CAS, Google Scholar16. Abdelhamid HN, El-Zohry AM, Cong J et al. Towards implementing hierarchical porous zeolitic imidazolate frameworks in dye-sensitized solar cells. R. Soc. Open Sci. 6(7), 190723 (2019).Crossref, Medline, CAS, Google Scholar17. Abdelhamid HN, El-Bery HM, Metwally AA, Elshazly M, Hathout RM. Synthesis of CdS-modified chitosan quantum dots for the drug delivery of sesamol. Carbohydr. Polym. 214, 90–99 (2019).Crossref, Medline, CAS, Google Scholar18. Valencia L, Abdelhamid HN. Nanocellulose leaf-like zeolitic imidazolate framework (ZIF-L) foams for selective capture of carbon dioxide. Carbohydr. Polym. 213, 338–345 (2019).Crossref, Medline, CAS, Google Scholar19. Abdelhamid HN, Wilk-Kozubek M, El-Zohry AM et al. Luminescence properties of a family of lanthanide metal-organic frameworks. Microporous Mesoporous Mater. 279, 400–406 (2019).Crossref, CAS, Google Scholar20. Abdel-Magied AF, Abdelhamid HN, Ashour RM, Zou X, Forsberg K. Hierarchical porous zeolitic imidazolate frameworks nanoparticles for efficient adsorption of rare-earth elements. Microporous Mesoporous Mater. 278, 175–184 (2019).Crossref, CAS, Google Scholar21. In:.Nanoparticulate Drug Delivery Systems. Keservani RK, Sharma AK (Eds). Apple Academic Press, USA (2019).Crossref, Google Scholar22. Abdelhamid HN, Wu H-F. Nanoparticles advance drug delivery for cancer cells. In: Nanoparticulate Drug Delivery Systems. Keservani RKSharma AK (Eds). Apple Academic Press, USA, 121–150 (2019).Crossref, Google Scholar23. Kumaran S, Abdelhamid HN, Hasan N, Wu H-F. Cytotoxicity of palladium nanoparticles against Aspergillus Niger. Nanosci. Nanotechnol. – Asia 10(1), 80–85 (2020).Crossref, CAS, Google Scholar24. Iqbal MN, Abdel-Magied AF, Abdelhamid HN et al. Mesoporous ruthenium oxide: a heterogeneous catalyst for water oxidation. ACS Sustain. Chem. Eng. 5(11), 9651–9656 (2017).Crossref, CAS, Google Scholar25. Allahverdiyev AM, Abamor ES, Bagirova M, Rafailovich M. Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol. 6(8), 933–940 (2011).Link, CAS, Google Scholar26. Hayat S, Muzammil S, Shabana et al. Quorum quenching: role of nanoparticles as signal jammers in gram-negative bacteria. Future Microbiol. 14(1), 61–72 (2019).Link, CAS, Google Scholar27. Oberdörster G. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J. Intern. Med. 267(1), 89–105 (2010).Crossref, Medline, CAS, Google Scholar28. Hussein KH, Abdelhamid HN, Zou X, Woo H-M. Ultrasonicated graphene oxide enhances bone and skin wound regeneration. Mater. Sci. Eng. C 94, 484–492 (2019).Crossref, Medline, CAS, Google Scholar29. Dowaidar M, Nasser Abdelhamid H, Hällbrink M, Langel Ü, Zou X. Chitosan enhances gene delivery of oligonucleotide complexes with magnetic nanoparticles–cell-penetrating peptide. J. Biomater. Appl. 33(3), 392–401 (2018).Crossref, Medline, CAS, Google ScholarFiguresReferencesRelatedDetailsCited ByImprovement of Transfection with PepFects Using Organic and Inorganic Materials12 November 2021Highly selective dehydration of methanol over metal-organic frameworks (MOFs)-derived ZnO@CarbonJournal of Environmental Chemical Engineering, Vol. 9, No. 6Nanobiotechnology as a platform for the diagnosis of COVID-19: a review24 March 2021 | Nanotechnology for Environmental Engineering, Vol. 6, No. 1Selective dehydrogenation of isopropanol on carbonized metal–organic frameworksNano-Structures & Nano-Objects, Vol. 24 Vol. 15, No. 6 Follow us on social media for the latest updates Metrics Downloaded 43 times History Received 15 September 2019 Accepted 27 February 2020 Published online 6 April 2020 Published in print April 2020 Information© 2020 Future Medicine LtdKeywordsantibacterialsmatrix-assisted laser desorption ionization mass spectrometrynanocytotoxicitynanomedicineFinancial & competing interests disclosureThe author has no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.No writing assistance was utilized in the production of this manuscript.PDF download" @default.
- W3014920290 created "2020-04-10" @default.
- W3014920290 creator A5064068933 @default.
- W3014920290 date "2020-04-01" @default.
- W3014920290 modified "2023-10-14" @default.
- W3014920290 title "Nanocytotoxicity using matrix-assisted laser desorption ionization mass spectrometry" @default.
- W3014920290 cites W1594755745 @default.
- W3014920290 cites W1969949177 @default.
- W3014920290 cites W2017139149 @default.
- W3014920290 cites W2058436455 @default.
- W3014920290 cites W2095007691 @default.
- W3014920290 cites W2117187775 @default.
- W3014920290 cites W2136739698 @default.
- W3014920290 cites W2326098824 @default.
- W3014920290 cites W2572364775 @default.
- W3014920290 cites W2625254499 @default.
- W3014920290 cites W2746953041 @default.
- W3014920290 cites W2765363848 @default.
- W3014920290 cites W2783790721 @default.
- W3014920290 cites W2789383166 @default.
- W3014920290 cites W2891430959 @default.
- W3014920290 cites W2892344177 @default.
- W3014920290 cites W2894451789 @default.
- W3014920290 cites W2901036577 @default.
- W3014920290 cites W2904566472 @default.
- W3014920290 cites W2909261901 @default.
- W3014920290 cites W2913774492 @default.
- W3014920290 cites W2919774603 @default.
- W3014920290 cites W2921069477 @default.
- W3014920290 cites W2941746013 @default.
- W3014920290 cites W2956115205 @default.
- W3014920290 cites W2959658364 @default.
- W3014920290 cites W2959733469 @default.
- W3014920290 cites W2972854023 @default.
- W3014920290 cites W3002616297 @default.
- W3014920290 doi "https://doi.org/10.2217/fmb-2019-0260" @default.
- W3014920290 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32250162" @default.
- W3014920290 hasPublicationYear "2020" @default.
- W3014920290 type Work @default.
- W3014920290 sameAs 3014920290 @default.
- W3014920290 citedByCount "6" @default.
- W3014920290 countsByYear W30149202902020 @default.
- W3014920290 countsByYear W30149202902021 @default.
- W3014920290 countsByYear W30149202902023 @default.
- W3014920290 crossrefType "journal-article" @default.
- W3014920290 hasAuthorship W3014920290A5064068933 @default.
- W3014920290 hasConcept C106487976 @default.
- W3014920290 hasConcept C113196181 @default.
- W3014920290 hasConcept C138850012 @default.
- W3014920290 hasConcept C139883154 @default.
- W3014920290 hasConcept C145148216 @default.
- W3014920290 hasConcept C150394285 @default.
- W3014920290 hasConcept C162356407 @default.
- W3014920290 hasConcept C162711632 @default.
- W3014920290 hasConcept C167050937 @default.
- W3014920290 hasConcept C178790620 @default.
- W3014920290 hasConcept C185592680 @default.
- W3014920290 hasConcept C198291218 @default.
- W3014920290 hasConcept C205759337 @default.
- W3014920290 hasConcept C24066741 @default.
- W3014920290 hasConcept C40684141 @default.
- W3014920290 hasConcept C43617362 @default.
- W3014920290 hasConcept C53730454 @default.
- W3014920290 hasConcept C61001039 @default.
- W3014920290 hasConcept C67839113 @default.
- W3014920290 hasConcept C75280812 @default.
- W3014920290 hasConceptScore W3014920290C106487976 @default.
- W3014920290 hasConceptScore W3014920290C113196181 @default.
- W3014920290 hasConceptScore W3014920290C138850012 @default.
- W3014920290 hasConceptScore W3014920290C139883154 @default.
- W3014920290 hasConceptScore W3014920290C145148216 @default.
- W3014920290 hasConceptScore W3014920290C150394285 @default.
- W3014920290 hasConceptScore W3014920290C162356407 @default.
- W3014920290 hasConceptScore W3014920290C162711632 @default.
- W3014920290 hasConceptScore W3014920290C167050937 @default.
- W3014920290 hasConceptScore W3014920290C178790620 @default.
- W3014920290 hasConceptScore W3014920290C185592680 @default.
- W3014920290 hasConceptScore W3014920290C198291218 @default.
- W3014920290 hasConceptScore W3014920290C205759337 @default.
- W3014920290 hasConceptScore W3014920290C24066741 @default.
- W3014920290 hasConceptScore W3014920290C40684141 @default.
- W3014920290 hasConceptScore W3014920290C43617362 @default.
- W3014920290 hasConceptScore W3014920290C53730454 @default.
- W3014920290 hasConceptScore W3014920290C61001039 @default.
- W3014920290 hasConceptScore W3014920290C67839113 @default.
- W3014920290 hasConceptScore W3014920290C75280812 @default.
- W3014920290 hasIssue "6" @default.
- W3014920290 hasLocation W30149202901 @default.
- W3014920290 hasOpenAccess W3014920290 @default.
- W3014920290 hasPrimaryLocation W30149202901 @default.
- W3014920290 hasRelatedWork W1978331183 @default.
- W3014920290 hasRelatedWork W2010385439 @default.
- W3014920290 hasRelatedWork W2050157502 @default.
- W3014920290 hasRelatedWork W2053849543 @default.
- W3014920290 hasRelatedWork W2061225477 @default.
- W3014920290 hasRelatedWork W2119443883 @default.
- W3014920290 hasRelatedWork W2228551018 @default.
- W3014920290 hasRelatedWork W246369611 @default.