Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014938165> ?p ?o ?g. }
- W3014938165 endingPage "12" @default.
- W3014938165 startingPage "1" @default.
- W3014938165 abstract "In many real-world fault diagnosis applications, due to the frequent changes in working conditions, the distribution of labeled training data (source domain) is different from the distribution of the unlabeled test data (target domain), which leads to performance degradation. In order to solve this problem, an end-to-end unsupervised domain adaptation bear fault diagnosis model that combines Riemann metric correlation alignment and one-dimensional convolutional neural network (RMCA-1DCNN) is proposed in this study. Second-order statistic alignment of the specific activation layer in source and target domains is considered to be a regularization item and embedded in the deep convolutional neural network architecture to compensate for domain shift. Experimental results on the Case Western Reserve University motor bearing database demonstrate that the proposed method has strong fault-discriminative and domain-invariant capacity. Therefore, the proposed method can achieve higher diagnosis accuracy than that of other existing experimental methods." @default.
- W3014938165 created "2020-04-10" @default.
- W3014938165 creator A5074569701 @default.
- W3014938165 creator A5089005116 @default.
- W3014938165 date "2020-03-31" @default.
- W3014938165 modified "2023-10-16" @default.
- W3014938165 title "Deep Domain Adaptation Model for Bearing Fault Diagnosis with Riemann Metric Correlation Alignment" @default.
- W3014938165 cites W1171747364 @default.
- W3014938165 cites W2046641793 @default.
- W3014938165 cites W2081102568 @default.
- W3014938165 cites W2112122263 @default.
- W3014938165 cites W2219903032 @default.
- W3014938165 cites W2240559667 @default.
- W3014938165 cites W2313287456 @default.
- W3014938165 cites W2556013418 @default.
- W3014938165 cites W2584994008 @default.
- W3014938165 cites W2588646734 @default.
- W3014938165 cites W2590288147 @default.
- W3014938165 cites W2734669076 @default.
- W3014938165 cites W2744604411 @default.
- W3014938165 cites W2810522164 @default.
- W3014938165 cites W2884325279 @default.
- W3014938165 cites W2903917280 @default.
- W3014938165 cites W2904218127 @default.
- W3014938165 cites W2907460488 @default.
- W3014938165 cites W2914345141 @default.
- W3014938165 cites W2947583263 @default.
- W3014938165 cites W2955109214 @default.
- W3014938165 cites W2963756240 @default.
- W3014938165 cites W2968409655 @default.
- W3014938165 cites W620177138 @default.
- W3014938165 doi "https://doi.org/10.1155/2020/4302184" @default.
- W3014938165 hasPublicationYear "2020" @default.
- W3014938165 type Work @default.
- W3014938165 sameAs 3014938165 @default.
- W3014938165 citedByCount "11" @default.
- W3014938165 countsByYear W30149381652020 @default.
- W3014938165 countsByYear W30149381652021 @default.
- W3014938165 countsByYear W30149381652022 @default.
- W3014938165 countsByYear W30149381652023 @default.
- W3014938165 crossrefType "journal-article" @default.
- W3014938165 hasAuthorship W3014938165A5074569701 @default.
- W3014938165 hasAuthorship W3014938165A5089005116 @default.
- W3014938165 hasBestOaLocation W30149381651 @default.
- W3014938165 hasConcept C105795698 @default.
- W3014938165 hasConcept C11413529 @default.
- W3014938165 hasConcept C124101348 @default.
- W3014938165 hasConcept C127313418 @default.
- W3014938165 hasConcept C127413603 @default.
- W3014938165 hasConcept C153180895 @default.
- W3014938165 hasConcept C154945302 @default.
- W3014938165 hasConcept C165205528 @default.
- W3014938165 hasConcept C175551986 @default.
- W3014938165 hasConcept C176217482 @default.
- W3014938165 hasConcept C21547014 @default.
- W3014938165 hasConcept C2776135515 @default.
- W3014938165 hasConcept C2776434776 @default.
- W3014938165 hasConcept C33923547 @default.
- W3014938165 hasConcept C41008148 @default.
- W3014938165 hasConcept C81363708 @default.
- W3014938165 hasConcept C89128539 @default.
- W3014938165 hasConcept C95623464 @default.
- W3014938165 hasConcept C97931131 @default.
- W3014938165 hasConceptScore W3014938165C105795698 @default.
- W3014938165 hasConceptScore W3014938165C11413529 @default.
- W3014938165 hasConceptScore W3014938165C124101348 @default.
- W3014938165 hasConceptScore W3014938165C127313418 @default.
- W3014938165 hasConceptScore W3014938165C127413603 @default.
- W3014938165 hasConceptScore W3014938165C153180895 @default.
- W3014938165 hasConceptScore W3014938165C154945302 @default.
- W3014938165 hasConceptScore W3014938165C165205528 @default.
- W3014938165 hasConceptScore W3014938165C175551986 @default.
- W3014938165 hasConceptScore W3014938165C176217482 @default.
- W3014938165 hasConceptScore W3014938165C21547014 @default.
- W3014938165 hasConceptScore W3014938165C2776135515 @default.
- W3014938165 hasConceptScore W3014938165C2776434776 @default.
- W3014938165 hasConceptScore W3014938165C33923547 @default.
- W3014938165 hasConceptScore W3014938165C41008148 @default.
- W3014938165 hasConceptScore W3014938165C81363708 @default.
- W3014938165 hasConceptScore W3014938165C89128539 @default.
- W3014938165 hasConceptScore W3014938165C95623464 @default.
- W3014938165 hasConceptScore W3014938165C97931131 @default.
- W3014938165 hasFunder F4320321001 @default.
- W3014938165 hasLocation W30149381651 @default.
- W3014938165 hasLocation W30149381652 @default.
- W3014938165 hasOpenAccess W3014938165 @default.
- W3014938165 hasPrimaryLocation W30149381651 @default.
- W3014938165 hasRelatedWork W1652783584 @default.
- W3014938165 hasRelatedWork W1990254706 @default.
- W3014938165 hasRelatedWork W2024160000 @default.
- W3014938165 hasRelatedWork W2404514746 @default.
- W3014938165 hasRelatedWork W2406522397 @default.
- W3014938165 hasRelatedWork W2518599539 @default.
- W3014938165 hasRelatedWork W2743258233 @default.
- W3014938165 hasRelatedWork W2773500201 @default.
- W3014938165 hasRelatedWork W4287995534 @default.
- W3014938165 hasRelatedWork W4319301798 @default.
- W3014938165 hasVolume "2020" @default.