Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014961541> ?p ?o ?g. }
- W3014961541 endingPage "3994" @default.
- W3014961541 startingPage "3983" @default.
- W3014961541 abstract "Abstract Background Low‐dose computed tomography screening has been proved to reduce lung cancer mortality, however, the issues of high false‐positive rate and overdiagnosis remain unsolved. Risk prediction models for lung cancer that could accurately identify high‐risk populations may help to increase efficiency. We thus sought to develop a risk prediction model for lung cancer incorporating epidemiological and metabolic markers in a Chinese population. Methods During 2006 and 2015, a total of 122 497 people were observed prospectively for lung cancer incidence with the total person‐years of 976 663. Stepwise multivariable‐adjusted logistic regressions with P entry = .15 and P stay = .20 were conducted to select the candidate variables including demographics and metabolic markers such as high‐sensitivity C‐reactive protein (hsCRP) and low‐density lipoprotein cholesterol (LDL‐C) into the prediction model. We used the C‐statistic to evaluate discrimination, and Hosmer‐Lemeshow tests for calibration. Tenfold cross‐validation was conducted for internal validation to assess the model's stability. Results A total of 984 lung cancer cases were identified during the follow‐up. The epidemiological model including age, gender, smoking status, alcohol intake status, coal dust exposure status, and body mass index generated a C‐statistic of 0.731. The full model additionally included hsCRP and LDL‐C showed significantly better discrimination (C‐statistic = 0.735, P = .033). In stratified analysis, the full model showed better predictive power in terms of C‐statistic in younger participants (<50 years, 0.709), females (0.726), and former or current smokers (0.742). The model calibrated well across the deciles of predicted risk in both the overall population ( P HL = .689) and all subgroups. Conclusions We developed and internally validated an easy‐to‐use risk prediction model for lung cancer among the Chinese population that could provide guidance for screening and surveillance." @default.
- W3014961541 created "2020-04-10" @default.
- W3014961541 creator A5007110118 @default.
- W3014961541 creator A5014625543 @default.
- W3014961541 creator A5021395053 @default.
- W3014961541 creator A5030921116 @default.
- W3014961541 creator A5035242858 @default.
- W3014961541 creator A5036848498 @default.
- W3014961541 creator A5046600167 @default.
- W3014961541 creator A5048233472 @default.
- W3014961541 creator A5049151430 @default.
- W3014961541 creator A5066405494 @default.
- W3014961541 creator A5069439091 @default.
- W3014961541 creator A5071213444 @default.
- W3014961541 creator A5071274204 @default.
- W3014961541 creator A5074025151 @default.
- W3014961541 creator A5078720822 @default.
- W3014961541 creator A5081734303 @default.
- W3014961541 creator A5082385246 @default.
- W3014961541 creator A5083850731 @default.
- W3014961541 date "2020-04-06" @default.
- W3014961541 modified "2023-10-02" @default.
- W3014961541 title "Risk prediction model for lung cancer incorporating metabolic markers: Development and internal validation in a Chinese population" @default.
- W3014961541 cites W130099911 @default.
- W3014961541 cites W1942602300 @default.
- W3014961541 cites W1984284242 @default.
- W3014961541 cites W2004410050 @default.
- W3014961541 cites W2009979998 @default.
- W3014961541 cites W2012944782 @default.
- W3014961541 cites W2013481207 @default.
- W3014961541 cites W2021035028 @default.
- W3014961541 cites W2029944316 @default.
- W3014961541 cites W2033649338 @default.
- W3014961541 cites W2052552265 @default.
- W3014961541 cites W2054360590 @default.
- W3014961541 cites W2057869581 @default.
- W3014961541 cites W2068727310 @default.
- W3014961541 cites W2075747141 @default.
- W3014961541 cites W2088210510 @default.
- W3014961541 cites W2090934237 @default.
- W3014961541 cites W2107423050 @default.
- W3014961541 cites W2109896839 @default.
- W3014961541 cites W2111855883 @default.
- W3014961541 cites W2112316706 @default.
- W3014961541 cites W2113847232 @default.
- W3014961541 cites W2119910794 @default.
- W3014961541 cites W2124484496 @default.
- W3014961541 cites W2125041551 @default.
- W3014961541 cites W2142966060 @default.
- W3014961541 cites W2144733577 @default.
- W3014961541 cites W2153012186 @default.
- W3014961541 cites W2156121263 @default.
- W3014961541 cites W2160653301 @default.
- W3014961541 cites W2163814837 @default.
- W3014961541 cites W2194457463 @default.
- W3014961541 cites W2306008721 @default.
- W3014961541 cites W2345128305 @default.
- W3014961541 cites W2394831049 @default.
- W3014961541 cites W2535300095 @default.
- W3014961541 cites W2547713098 @default.
- W3014961541 cites W2548522029 @default.
- W3014961541 cites W2576131567 @default.
- W3014961541 cites W2589700089 @default.
- W3014961541 cites W2592386650 @default.
- W3014961541 cites W2790816903 @default.
- W3014961541 cites W2795206391 @default.
- W3014961541 cites W2804850222 @default.
- W3014961541 cites W2895926103 @default.
- W3014961541 cites W2904199222 @default.
- W3014961541 cites W2908386505 @default.
- W3014961541 doi "https://doi.org/10.1002/cam4.3025" @default.
- W3014961541 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7286442" @default.
- W3014961541 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32253829" @default.
- W3014961541 hasPublicationYear "2020" @default.
- W3014961541 type Work @default.
- W3014961541 sameAs 3014961541 @default.
- W3014961541 citedByCount "10" @default.
- W3014961541 countsByYear W30149615412021 @default.
- W3014961541 countsByYear W30149615412022 @default.
- W3014961541 countsByYear W30149615412023 @default.
- W3014961541 crossrefType "journal-article" @default.
- W3014961541 hasAuthorship W3014961541A5007110118 @default.
- W3014961541 hasAuthorship W3014961541A5014625543 @default.
- W3014961541 hasAuthorship W3014961541A5021395053 @default.
- W3014961541 hasAuthorship W3014961541A5030921116 @default.
- W3014961541 hasAuthorship W3014961541A5035242858 @default.
- W3014961541 hasAuthorship W3014961541A5036848498 @default.
- W3014961541 hasAuthorship W3014961541A5046600167 @default.
- W3014961541 hasAuthorship W3014961541A5048233472 @default.
- W3014961541 hasAuthorship W3014961541A5049151430 @default.
- W3014961541 hasAuthorship W3014961541A5066405494 @default.
- W3014961541 hasAuthorship W3014961541A5069439091 @default.
- W3014961541 hasAuthorship W3014961541A5071213444 @default.
- W3014961541 hasAuthorship W3014961541A5071274204 @default.
- W3014961541 hasAuthorship W3014961541A5074025151 @default.
- W3014961541 hasAuthorship W3014961541A5078720822 @default.
- W3014961541 hasAuthorship W3014961541A5081734303 @default.
- W3014961541 hasAuthorship W3014961541A5082385246 @default.