Matches in SemOpenAlex for { <https://semopenalex.org/work/W3014982014> ?p ?o ?g. }
- W3014982014 endingPage "124914" @default.
- W3014982014 startingPage "124914" @default.
- W3014982014 abstract "Errors from hydrological simulations have substantial influence on hydrological applications. There are increasing interests to incorporate statistical models of the errors (error models) into hydrological applications to improve simulations. However, conventional error models are usually temporally unvaried and may be inadequate to handle model simulation errors when the underlying error statistics are strongly seasonal. To overcome this problem, the use of temporally varied error models in both prediction and forecasting applications are investigated. We analyze different levels of temporal granularity to identify the optimal temporally varied error model to best improve simulations and to quantify uncertainty. The Error Reduction and Representation In Stages (ERRIS) model is adapted in this study to improve streamflow simulations produced by the Variable Infiltration Capacity model for the Yarlung Tsangbo River basin. Well-marked seasonal and sub-seasonal variations in error statistics are found. Accordingly, three temporally varied ERRIS models are constructed at semi-annual (ERRIS-H), seasonal (ERRIS-S) and monthly (ERRIS-M) temporal granularity and compared with a benchmark model, the temporally unvaried model (ERRIS-A). Results show that the temporally varied ERRIS models are considerably more effective than the temporally unvaried one, with 34% reduction in continuous ranked probability score (CRPS) and 23% increase in Nash-Sutcliffe Efficiency (NSE) for prediction applications. With respect to forecasting applications, improvements of about 7% in CRPS are achieved by the temporally varied models. The performance of different temporally varied error models roughly follows the same order as the level of temporal granularity. Generally, ERRIS-S and ERRIS-M are similarly effective, with ERRIS-M providing additional improvement by more than 15% in CRPS for the spring season and by at least 30% for the autumn season. It is concluded that the consistency of temporal granularity between error models and variations of error statistics is the key to effective error reduction and uncertainty quantification. When complicated hydrological processes exist, hydrological model tends to produce seasonally and even sub-seasonally varied error statistics. Consequently, temporally finer error models are expected to lead to higher accuracy and reliability." @default.
- W3014982014 created "2020-04-10" @default.
- W3014982014 creator A5000108862 @default.
- W3014982014 creator A5050559754 @default.
- W3014982014 creator A5063481044 @default.
- W3014982014 date "2020-07-01" @default.
- W3014982014 modified "2023-09-28" @default.
- W3014982014 title "Temporally varied error modelling for improving simulations and quantifying uncertainty" @default.
- W3014982014 cites W1534991942 @default.
- W3014982014 cites W1539898068 @default.
- W3014982014 cites W1554995351 @default.
- W3014982014 cites W1567760859 @default.
- W3014982014 cites W1608463673 @default.
- W3014982014 cites W1689565907 @default.
- W3014982014 cites W1752221099 @default.
- W3014982014 cites W1828216822 @default.
- W3014982014 cites W1843177648 @default.
- W3014982014 cites W1851820387 @default.
- W3014982014 cites W1862292973 @default.
- W3014982014 cites W1907702319 @default.
- W3014982014 cites W1908569208 @default.
- W3014982014 cites W1912810943 @default.
- W3014982014 cites W1919502922 @default.
- W3014982014 cites W1981595366 @default.
- W3014982014 cites W1984038448 @default.
- W3014982014 cites W2033043454 @default.
- W3014982014 cites W2034464519 @default.
- W3014982014 cites W2048314306 @default.
- W3014982014 cites W2060636071 @default.
- W3014982014 cites W2070924390 @default.
- W3014982014 cites W2074418666 @default.
- W3014982014 cites W2075415359 @default.
- W3014982014 cites W2090915513 @default.
- W3014982014 cites W2095680278 @default.
- W3014982014 cites W2109790569 @default.
- W3014982014 cites W2115345337 @default.
- W3014982014 cites W2115986271 @default.
- W3014982014 cites W2116791145 @default.
- W3014982014 cites W2119839985 @default.
- W3014982014 cites W2121281063 @default.
- W3014982014 cites W2122315938 @default.
- W3014982014 cites W2122389133 @default.
- W3014982014 cites W2124505806 @default.
- W3014982014 cites W2136276425 @default.
- W3014982014 cites W2143357393 @default.
- W3014982014 cites W2162520789 @default.
- W3014982014 cites W2170396766 @default.
- W3014982014 cites W2178242555 @default.
- W3014982014 cites W2187699728 @default.
- W3014982014 cites W2215560032 @default.
- W3014982014 cites W2291141878 @default.
- W3014982014 cites W2314050564 @default.
- W3014982014 cites W2317623121 @default.
- W3014982014 cites W2412251648 @default.
- W3014982014 cites W2531390983 @default.
- W3014982014 cites W2580637162 @default.
- W3014982014 cites W2594514080 @default.
- W3014982014 cites W2615050570 @default.
- W3014982014 cites W2618478965 @default.
- W3014982014 cites W2734909699 @default.
- W3014982014 cites W2751355674 @default.
- W3014982014 cites W2765210464 @default.
- W3014982014 cites W2769009462 @default.
- W3014982014 cites W2792685094 @default.
- W3014982014 cites W2792826343 @default.
- W3014982014 cites W2800518099 @default.
- W3014982014 doi "https://doi.org/10.1016/j.jhydrol.2020.124914" @default.
- W3014982014 hasPublicationYear "2020" @default.
- W3014982014 type Work @default.
- W3014982014 sameAs 3014982014 @default.
- W3014982014 citedByCount "6" @default.
- W3014982014 countsByYear W30149820142021 @default.
- W3014982014 countsByYear W30149820142022 @default.
- W3014982014 countsByYear W30149820142023 @default.
- W3014982014 crossrefType "journal-article" @default.
- W3014982014 hasAuthorship W3014982014A5000108862 @default.
- W3014982014 hasAuthorship W3014982014A5050559754 @default.
- W3014982014 hasAuthorship W3014982014A5063481044 @default.
- W3014982014 hasConcept C105795698 @default.
- W3014982014 hasConcept C111919701 @default.
- W3014982014 hasConcept C119857082 @default.
- W3014982014 hasConcept C126197015 @default.
- W3014982014 hasConcept C126645576 @default.
- W3014982014 hasConcept C127313418 @default.
- W3014982014 hasConcept C13280743 @default.
- W3014982014 hasConcept C177774035 @default.
- W3014982014 hasConcept C179024874 @default.
- W3014982014 hasConcept C185798385 @default.
- W3014982014 hasConcept C205649164 @default.
- W3014982014 hasConcept C33923547 @default.
- W3014982014 hasConcept C41008148 @default.
- W3014982014 hasConcept C49204034 @default.
- W3014982014 hasConcept C53739315 @default.
- W3014982014 hasConcept C58640448 @default.
- W3014982014 hasConceptScore W3014982014C105795698 @default.
- W3014982014 hasConceptScore W3014982014C111919701 @default.
- W3014982014 hasConceptScore W3014982014C119857082 @default.
- W3014982014 hasConceptScore W3014982014C126197015 @default.