Matches in SemOpenAlex for { <https://semopenalex.org/work/W3015087357> ?p ?o ?g. }
- W3015087357 abstract "Abstract Zebrafish ( Danio rerio ) swim within days of fertilization, powered by muscles of the axial myotomes. Forces generated by these muscles can be measured rapidly in whole, intact larval tails by adapting protocols developed for ex vivo muscle mechanics. But it is not known how well these measurements reflect the function of the underlying muscle fibers and sarcomeres. Here we consider the anatomy of the 5-day-old, wild-type larval tail, and implement technical modifications to measuring muscle physiology in intact tails. Specifically, we quantify fundamental relationships between force, length, and shortening velocity, and capture the extreme contractile speeds required to swim with tail-beat frequencies of 80-100 Hz. Therefore, we analyze 1000 frames/second movies to track the movement of structures, visible in the transparent tail, which correlate with sarcomere length. We also characterize the passive viscoelastic properties of the preparation to isolate forces contributed by non-muscle structures within the tail. Myotomal muscles generate more than 95% of their maximum isometric stress (76±3 mN/mm 2 ) over the range of muscle lengths used in vivo . They have rapid twitch kinetics (full width at half-maximum stress: 11±1 msec) and a high twitch to tetanus ratio (0.91±0.05), indicating adaptations for fast excitation-contraction coupling. Although contractile stress is relatively low, myotomal muscles develop high net power (134±20 W/kg at 80 Hz) in cyclical work loop experiments designed to simulate the in vivo dynamics of muscle fibers during swimming. When shortening at a constant speed of 7±1 muscle lengths/second, muscles develop 86±2% of isometric stress, while peak instantaneous power during 100Hz work loops occurs at 18±2 muscle lengths/second. These approaches can improve the usefulness of zebrafish as a model system for muscle research by providing a rapid and sensitive functional readout for experimental interventions. Statement of significance The zebrafish ( Danio rerio ) may prove a uniquely efficient model system for characterizing vertebrate muscle physiology. Transparent, drug-permeable larva – each, in essence, a fully functional muscle – can be generated rapidly, inexpensively, and in large numbers. Critically, the zebrafish genome contains homologs of major muscle genes and is highly amenable to manipulation. To reach its potential, reliable (and preferably rapid) means are needed to observe the effects of experimental interventions on larval muscle function. In the present study we show how mechanical measurements made on whole, intact larval tails can provide a readout of fundamental muscle-mechanical properties. Additionally, we show that these muscles are among the fastest ever measured, and therefore worthy of study in their own right." @default.
- W3015087357 created "2020-04-10" @default.
- W3015087357 creator A5023718239 @default.
- W3015087357 creator A5037574382 @default.
- W3015087357 creator A5051231953 @default.
- W3015087357 creator A5070253378 @default.
- W3015087357 creator A5090009799 @default.
- W3015087357 date "2020-04-03" @default.
- W3015087357 modified "2023-09-26" @default.
- W3015087357 title "Mechanical characteristics of ultrafast zebrafish larval swimming muscles" @default.
- W3015087357 cites W1615535881 @default.
- W3015087357 cites W1917415069 @default.
- W3015087357 cites W1932232911 @default.
- W3015087357 cites W1947859348 @default.
- W3015087357 cites W1973938885 @default.
- W3015087357 cites W1976439452 @default.
- W3015087357 cites W2018753432 @default.
- W3015087357 cites W2028217891 @default.
- W3015087357 cites W2029221304 @default.
- W3015087357 cites W2051018818 @default.
- W3015087357 cites W2055149777 @default.
- W3015087357 cites W2061391419 @default.
- W3015087357 cites W2063356701 @default.
- W3015087357 cites W2063802264 @default.
- W3015087357 cites W2073951840 @default.
- W3015087357 cites W2086061329 @default.
- W3015087357 cites W2089000296 @default.
- W3015087357 cites W2090836895 @default.
- W3015087357 cites W2093169204 @default.
- W3015087357 cites W2107348193 @default.
- W3015087357 cites W2109401564 @default.
- W3015087357 cites W2111475298 @default.
- W3015087357 cites W2113633867 @default.
- W3015087357 cites W2115448484 @default.
- W3015087357 cites W2121312672 @default.
- W3015087357 cites W2125295969 @default.
- W3015087357 cites W2125908423 @default.
- W3015087357 cites W2126040686 @default.
- W3015087357 cites W2136931827 @default.
- W3015087357 cites W2159255304 @default.
- W3015087357 cites W2161035804 @default.
- W3015087357 cites W2167279371 @default.
- W3015087357 cites W2169400659 @default.
- W3015087357 cites W2179744587 @default.
- W3015087357 cites W2182146398 @default.
- W3015087357 cites W2239723008 @default.
- W3015087357 cites W2273441136 @default.
- W3015087357 cites W2279481531 @default.
- W3015087357 cites W2319749396 @default.
- W3015087357 cites W2529186728 @default.
- W3015087357 cites W2552770614 @default.
- W3015087357 cites W2783122554 @default.
- W3015087357 cites W2808345397 @default.
- W3015087357 cites W2883095167 @default.
- W3015087357 cites W2951586487 @default.
- W3015087357 cites W2954027770 @default.
- W3015087357 cites W4240053492 @default.
- W3015087357 doi "https://doi.org/10.1101/2020.04.02.010298" @default.
- W3015087357 hasPublicationYear "2020" @default.
- W3015087357 type Work @default.
- W3015087357 sameAs 3015087357 @default.
- W3015087357 citedByCount "0" @default.
- W3015087357 crossrefType "posted-content" @default.
- W3015087357 hasAuthorship W3015087357A5023718239 @default.
- W3015087357 hasAuthorship W3015087357A5037574382 @default.
- W3015087357 hasAuthorship W3015087357A5051231953 @default.
- W3015087357 hasAuthorship W3015087357A5070253378 @default.
- W3015087357 hasAuthorship W3015087357A5090009799 @default.
- W3015087357 hasBestOaLocation W30150873571 @default.
- W3015087357 hasConcept C103486182 @default.
- W3015087357 hasConcept C104317684 @default.
- W3015087357 hasConcept C105702510 @default.
- W3015087357 hasConcept C12554922 @default.
- W3015087357 hasConcept C134018914 @default.
- W3015087357 hasConcept C150903083 @default.
- W3015087357 hasConcept C163415756 @default.
- W3015087357 hasConcept C185592680 @default.
- W3015087357 hasConcept C207001950 @default.
- W3015087357 hasConcept C207200792 @default.
- W3015087357 hasConcept C2776050358 @default.
- W3015087357 hasConcept C2776878037 @default.
- W3015087357 hasConcept C39133596 @default.
- W3015087357 hasConcept C42407357 @default.
- W3015087357 hasConcept C55493867 @default.
- W3015087357 hasConcept C68731436 @default.
- W3015087357 hasConcept C6997183 @default.
- W3015087357 hasConcept C86803240 @default.
- W3015087357 hasConcept C95444343 @default.
- W3015087357 hasConceptScore W3015087357C103486182 @default.
- W3015087357 hasConceptScore W3015087357C104317684 @default.
- W3015087357 hasConceptScore W3015087357C105702510 @default.
- W3015087357 hasConceptScore W3015087357C12554922 @default.
- W3015087357 hasConceptScore W3015087357C134018914 @default.
- W3015087357 hasConceptScore W3015087357C150903083 @default.
- W3015087357 hasConceptScore W3015087357C163415756 @default.
- W3015087357 hasConceptScore W3015087357C185592680 @default.
- W3015087357 hasConceptScore W3015087357C207001950 @default.
- W3015087357 hasConceptScore W3015087357C207200792 @default.
- W3015087357 hasConceptScore W3015087357C2776050358 @default.
- W3015087357 hasConceptScore W3015087357C2776878037 @default.