Matches in SemOpenAlex for { <https://semopenalex.org/work/W3015092912> ?p ?o ?g. }
- W3015092912 endingPage "6281" @default.
- W3015092912 startingPage "6265" @default.
- W3015092912 abstract "Abstract Tropical cyclone stochastic eventset is a critical component in any cyclone risk assessment model. In this study, a novel methodology is proposed for the development of basin wide tropical cyclone stochastic eventset. The proposed methodology utilizes the reanalysis data to represent the environmental conditions of cyclones, which in turn governs the cyclone behaviour and variability in space and time. The basic assumption in the proposed methodology is that, given the high correlation between cyclone behaviour and environmental conditions, the cyclone may respond similarly if the environmental conditions are identical. Thus, it is possible to model the response of a cyclone based on identifying a group of events with similar state in history. The state of cyclone at any given instance is defined using cyclone track characteristics and environmental parameters from ocean and atmospheric reanalysis data. The methodology presented herein addresses some key open questions in the stochastic eventset development about capturing the seasonal and spatial variability of cyclone, and modelling of events in historically data sparse region. The k nearest neighbour machine learning algorithm was used to train the track movement, intensification, and inland decay model. The proposed methodology is illustrated through a case study consisting of the development of stochastic event set for South West Pacific basin and compared with historical observations. The methodology introduced in this article represents a step toward a rational approach to capture the seasonality of cyclone; and effective use of environmental information together with machine learning to generate realistic stochastic events." @default.
- W3015092912 created "2020-04-10" @default.
- W3015092912 creator A5018832141 @default.
- W3015092912 date "2020-04-28" @default.
- W3015092912 modified "2023-09-26" @default.
- W3015092912 title "Stochastic event set generation for tropical cyclone using machine‐learning approach guided by environmental data" @default.
- W3015092912 cites W1645858368 @default.
- W3015092912 cites W1965323643 @default.
- W3015092912 cites W1970461761 @default.
- W3015092912 cites W1970969089 @default.
- W3015092912 cites W1972423629 @default.
- W3015092912 cites W1975467086 @default.
- W3015092912 cites W1975850029 @default.
- W3015092912 cites W1980773843 @default.
- W3015092912 cites W1980986928 @default.
- W3015092912 cites W1988538286 @default.
- W3015092912 cites W1988606876 @default.
- W3015092912 cites W1990236355 @default.
- W3015092912 cites W1990743832 @default.
- W3015092912 cites W1991142212 @default.
- W3015092912 cites W1991339015 @default.
- W3015092912 cites W1993335886 @default.
- W3015092912 cites W2002398069 @default.
- W3015092912 cites W2003443855 @default.
- W3015092912 cites W2008137802 @default.
- W3015092912 cites W2016054513 @default.
- W3015092912 cites W2021418005 @default.
- W3015092912 cites W2028247729 @default.
- W3015092912 cites W2029028988 @default.
- W3015092912 cites W2034783530 @default.
- W3015092912 cites W2035569645 @default.
- W3015092912 cites W2035971805 @default.
- W3015092912 cites W2038866329 @default.
- W3015092912 cites W2045090495 @default.
- W3015092912 cites W2047130373 @default.
- W3015092912 cites W2050345188 @default.
- W3015092912 cites W2052231422 @default.
- W3015092912 cites W2069507101 @default.
- W3015092912 cites W2098197310 @default.
- W3015092912 cites W2100080729 @default.
- W3015092912 cites W2106063801 @default.
- W3015092912 cites W2111008143 @default.
- W3015092912 cites W2114918600 @default.
- W3015092912 cites W2122111042 @default.
- W3015092912 cites W2122823404 @default.
- W3015092912 cites W2126601523 @default.
- W3015092912 cites W2137235251 @default.
- W3015092912 cites W2144702878 @default.
- W3015092912 cites W2147753218 @default.
- W3015092912 cites W2149425085 @default.
- W3015092912 cites W2161501662 @default.
- W3015092912 cites W2173836821 @default.
- W3015092912 cites W2176594951 @default.
- W3015092912 cites W2177631287 @default.
- W3015092912 cites W2177880997 @default.
- W3015092912 cites W2178860065 @default.
- W3015092912 cites W2180096630 @default.
- W3015092912 cites W2189286123 @default.
- W3015092912 cites W2271789325 @default.
- W3015092912 cites W2325707906 @default.
- W3015092912 cites W2558507275 @default.
- W3015092912 cites W2560094250 @default.
- W3015092912 cites W2595400030 @default.
- W3015092912 cites W2610277938 @default.
- W3015092912 cites W2616290533 @default.
- W3015092912 cites W2748261818 @default.
- W3015092912 cites W2784262965 @default.
- W3015092912 cites W2944825248 @default.
- W3015092912 cites W2974839151 @default.
- W3015092912 cites W2990014227 @default.
- W3015092912 cites W3101477643 @default.
- W3015092912 cites W4236157326 @default.
- W3015092912 cites W616584602 @default.
- W3015092912 doi "https://doi.org/10.1002/joc.6579" @default.
- W3015092912 hasPublicationYear "2020" @default.
- W3015092912 type Work @default.
- W3015092912 sameAs 3015092912 @default.
- W3015092912 citedByCount "0" @default.
- W3015092912 crossrefType "journal-article" @default.
- W3015092912 hasAuthorship W3015092912A5018832141 @default.
- W3015092912 hasConcept C102561126 @default.
- W3015092912 hasConcept C105795698 @default.
- W3015092912 hasConcept C11472968 @default.
- W3015092912 hasConcept C121332964 @default.
- W3015092912 hasConcept C127313418 @default.
- W3015092912 hasConcept C127491075 @default.
- W3015092912 hasConcept C153294291 @default.
- W3015092912 hasConcept C205649164 @default.
- W3015092912 hasConcept C2777864850 @default.
- W3015092912 hasConcept C2779662365 @default.
- W3015092912 hasConcept C29141058 @default.
- W3015092912 hasConcept C33923547 @default.
- W3015092912 hasConcept C39432304 @default.
- W3015092912 hasConcept C41008148 @default.
- W3015092912 hasConcept C42935608 @default.
- W3015092912 hasConcept C49204034 @default.
- W3015092912 hasConcept C62520636 @default.
- W3015092912 hasConcept C9390403 @default.