Matches in SemOpenAlex for { <https://semopenalex.org/work/W3015171039> ?p ?o ?g. }
- W3015171039 endingPage "63143" @default.
- W3015171039 startingPage "63134" @default.
- W3015171039 abstract "Given that there has been ecological degradation for a long time in Shanxi Province, China. This research addresses this situation by analyzing the energy structure and environmental risk in the past and in the future. Consequently, this study uses two indicator systems, ecosystem interaction system and environmental risk representation, to illustrate the environmental risk in an energy intensive region of China. And we build a BP-SVM model applying a back-propagation (BP) neural network and support vector machine (SVM) arithmetic to predict the future ecology-economy-society system interactions in Shanxi Province. At last, we classify the risk rank by using environmental risk representation indicators. The main conclusions from this research are as follows: Firstly, two indicator systems have advantages in describing the ecological-economy-society interaction especially the human society's impact on the ecosystem over a single indicator system. Secondly, by the BP-SVM model, there is a relatively high ecological risk rank in next few years in Shanxi Province, although it fluctuates occasionally. Finally, this study not only offers recommendations for the government to develop policies to transform from a coal-energy based system to a clean, safe, and efficient modern energy system, but also points out the implications for government administrations in energy intensive areas of developing countries to guide the economic transformation." @default.
- W3015171039 created "2020-04-10" @default.
- W3015171039 creator A5024378134 @default.
- W3015171039 creator A5028204099 @default.
- W3015171039 creator A5042824665 @default.
- W3015171039 creator A5090469623 @default.
- W3015171039 date "2020-01-01" @default.
- W3015171039 modified "2023-10-16" @default.
- W3015171039 title "Environmental Risk and Policy Choices in an Energy Intensive Region of China—An Empirical Study in Shanxi Province" @default.
- W3015171039 cites W1077738104 @default.
- W3015171039 cites W138770399 @default.
- W3015171039 cites W1586335931 @default.
- W3015171039 cites W1966228714 @default.
- W3015171039 cites W1968642553 @default.
- W3015171039 cites W1975086456 @default.
- W3015171039 cites W1977177161 @default.
- W3015171039 cites W1988518729 @default.
- W3015171039 cites W1996150433 @default.
- W3015171039 cites W1999139216 @default.
- W3015171039 cites W2000379069 @default.
- W3015171039 cites W2000971069 @default.
- W3015171039 cites W2010340919 @default.
- W3015171039 cites W2022890795 @default.
- W3015171039 cites W2028070629 @default.
- W3015171039 cites W2029278175 @default.
- W3015171039 cites W2044586050 @default.
- W3015171039 cites W2045824543 @default.
- W3015171039 cites W2050059959 @default.
- W3015171039 cites W2057736041 @default.
- W3015171039 cites W2058108515 @default.
- W3015171039 cites W2062443227 @default.
- W3015171039 cites W2072462334 @default.
- W3015171039 cites W2077560601 @default.
- W3015171039 cites W2080639449 @default.
- W3015171039 cites W2088693129 @default.
- W3015171039 cites W2090593940 @default.
- W3015171039 cites W2091971808 @default.
- W3015171039 cites W2111072639 @default.
- W3015171039 cites W2134563598 @default.
- W3015171039 cites W2141070863 @default.
- W3015171039 cites W2152138353 @default.
- W3015171039 cites W2158001550 @default.
- W3015171039 cites W2170566158 @default.
- W3015171039 cites W2216591578 @default.
- W3015171039 cites W2253807794 @default.
- W3015171039 cites W2342361888 @default.
- W3015171039 cites W2361126465 @default.
- W3015171039 cites W2395753704 @default.
- W3015171039 cites W2467668176 @default.
- W3015171039 cites W2526484540 @default.
- W3015171039 cites W2754943815 @default.
- W3015171039 cites W2763632521 @default.
- W3015171039 cites W2773148899 @default.
- W3015171039 cites W2774163138 @default.
- W3015171039 cites W2777789384 @default.
- W3015171039 cites W2795791002 @default.
- W3015171039 cites W2810146622 @default.
- W3015171039 cites W2895002627 @default.
- W3015171039 cites W2900309182 @default.
- W3015171039 cites W2903234024 @default.
- W3015171039 cites W2904410405 @default.
- W3015171039 cites W2940846123 @default.
- W3015171039 cites W2972112648 @default.
- W3015171039 cites W2972484347 @default.
- W3015171039 cites W2974672412 @default.
- W3015171039 cites W2985319018 @default.
- W3015171039 cites W2987537864 @default.
- W3015171039 cites W52871114 @default.
- W3015171039 doi "https://doi.org/10.1109/access.2020.2984013" @default.
- W3015171039 hasPublicationYear "2020" @default.
- W3015171039 type Work @default.
- W3015171039 sameAs 3015171039 @default.
- W3015171039 citedByCount "4" @default.
- W3015171039 countsByYear W30151710392021 @default.
- W3015171039 countsByYear W30151710392023 @default.
- W3015171039 crossrefType "journal-article" @default.
- W3015171039 hasAuthorship W3015171039A5024378134 @default.
- W3015171039 hasAuthorship W3015171039A5028204099 @default.
- W3015171039 hasAuthorship W3015171039A5042824665 @default.
- W3015171039 hasAuthorship W3015171039A5090469623 @default.
- W3015171039 hasBestOaLocation W30151710391 @default.
- W3015171039 hasConcept C107826830 @default.
- W3015171039 hasConcept C114614502 @default.
- W3015171039 hasConcept C12267149 @default.
- W3015171039 hasConcept C134560507 @default.
- W3015171039 hasConcept C138885662 @default.
- W3015171039 hasConcept C144133560 @default.
- W3015171039 hasConcept C154945302 @default.
- W3015171039 hasConcept C162324750 @default.
- W3015171039 hasConcept C164226766 @default.
- W3015171039 hasConcept C166957645 @default.
- W3015171039 hasConcept C17744445 @default.
- W3015171039 hasConcept C191935318 @default.
- W3015171039 hasConcept C199539241 @default.
- W3015171039 hasConcept C205649164 @default.
- W3015171039 hasConcept C2776359362 @default.
- W3015171039 hasConcept C2778137410 @default.
- W3015171039 hasConcept C33923547 @default.