Matches in SemOpenAlex for { <https://semopenalex.org/work/W3015203112> ?p ?o ?g. }
- W3015203112 endingPage "86" @default.
- W3015203112 startingPage "75" @default.
- W3015203112 abstract "The present study was aimed to model the hydration characteristics of green chickpea (GC) using mathematical modelling and examine predictive ability of artificial neural network (ANN) modelling. Hydration of GC was performed at different temperatures 25, 35, 45, 55 and 65 °C. Different mathematical models were tested for the hydration at different temperatures. In ANN modelling, the hydration time and hydration temperature were used as input variables and moisture ratio, moisture content and hydration ratio were taken as output variables. Peleg model best described the hydration behavior at 25 °C; while hydration at high-temperature was better described by Page model and Ibarz et al. model. The optimum temperature obtained for hydration was 35 °C. Effective mass diffusion coefficient (De) increased from 1.55 × 10-11-1.79 × 10-9 m2/s with the increase in the hydration temperature. The low activation energy (39.66 kJ/moL) shows the low-temperature sensitiveness of GC. Low temperature hydration (25 °C) required higher time (>200 min) to achieve the equilibrium moisture content (EMC), however high temperature hydration (35–65 °C) reduced the EMC time (150 min). ANN was used to predict the hydration behavior and K fold cross validation was performed to check the over fitting of ANN model. Results show that the LOGSIGMOID transfer function showed better performance when used at the hidden layer input node in conjunction to both PURELIN and TANSIGMOID. TANSIGMOID was found suitable for moisture ratio (MR) and hydration ratio (HR) prediction, as opposed to PURELIN for moisture content (MC) data. Satisfactory model prediction was obtained when the number of neurons in the hidden layer for MC, MR and HR was 12, 8 and 15, respectively. Mathematical and ANN modelling results are useful to improve/predict the MC, MR and HR during hydration process of GC at different temperature and other similar process." @default.
- W3015203112 created "2020-04-17" @default.
- W3015203112 creator A5008990319 @default.
- W3015203112 creator A5017008339 @default.
- W3015203112 creator A5044715407 @default.
- W3015203112 creator A5077967672 @default.
- W3015203112 date "2021-03-01" @default.
- W3015203112 modified "2023-10-17" @default.
- W3015203112 title "Artificial neural network (ANNs) and mathematical modelling of hydration of green chickpea" @default.
- W3015203112 cites W1538828839 @default.
- W3015203112 cites W1921202957 @default.
- W3015203112 cites W1965883880 @default.
- W3015203112 cites W1977794741 @default.
- W3015203112 cites W1981029206 @default.
- W3015203112 cites W1983003124 @default.
- W3015203112 cites W1985453144 @default.
- W3015203112 cites W1989481575 @default.
- W3015203112 cites W2006090478 @default.
- W3015203112 cites W2020635119 @default.
- W3015203112 cites W2031313196 @default.
- W3015203112 cites W2050380621 @default.
- W3015203112 cites W2066085728 @default.
- W3015203112 cites W2077867554 @default.
- W3015203112 cites W2082869800 @default.
- W3015203112 cites W2083245448 @default.
- W3015203112 cites W2086965547 @default.
- W3015203112 cites W2094822547 @default.
- W3015203112 cites W2101356250 @default.
- W3015203112 cites W2105907783 @default.
- W3015203112 cites W2115319936 @default.
- W3015203112 cites W2147635757 @default.
- W3015203112 cites W2218867050 @default.
- W3015203112 cites W2526458026 @default.
- W3015203112 cites W2555608321 @default.
- W3015203112 cites W2621722442 @default.
- W3015203112 cites W2764071252 @default.
- W3015203112 cites W2782997882 @default.
- W3015203112 cites W2791515817 @default.
- W3015203112 cites W2955624624 @default.
- W3015203112 cites W339752901 @default.
- W3015203112 doi "https://doi.org/10.1016/j.inpa.2020.04.001" @default.
- W3015203112 hasPublicationYear "2021" @default.
- W3015203112 type Work @default.
- W3015203112 sameAs 3015203112 @default.
- W3015203112 citedByCount "13" @default.
- W3015203112 countsByYear W30152031122020 @default.
- W3015203112 countsByYear W30152031122021 @default.
- W3015203112 countsByYear W30152031122022 @default.
- W3015203112 countsByYear W30152031122023 @default.
- W3015203112 crossrefType "journal-article" @default.
- W3015203112 hasAuthorship W3015203112A5008990319 @default.
- W3015203112 hasAuthorship W3015203112A5017008339 @default.
- W3015203112 hasAuthorship W3015203112A5044715407 @default.
- W3015203112 hasAuthorship W3015203112A5077967672 @default.
- W3015203112 hasBestOaLocation W30152031121 @default.
- W3015203112 hasConcept C119857082 @default.
- W3015203112 hasConcept C121332964 @default.
- W3015203112 hasConcept C127413603 @default.
- W3015203112 hasConcept C147789679 @default.
- W3015203112 hasConcept C150394285 @default.
- W3015203112 hasConcept C159985019 @default.
- W3015203112 hasConcept C176864760 @default.
- W3015203112 hasConcept C185592680 @default.
- W3015203112 hasConcept C186060115 @default.
- W3015203112 hasConcept C187320778 @default.
- W3015203112 hasConcept C192562407 @default.
- W3015203112 hasConcept C24939127 @default.
- W3015203112 hasConcept C2777665048 @default.
- W3015203112 hasConcept C41008148 @default.
- W3015203112 hasConcept C43617362 @default.
- W3015203112 hasConcept C50644808 @default.
- W3015203112 hasConcept C51038369 @default.
- W3015203112 hasConcept C58445606 @default.
- W3015203112 hasConcept C69357855 @default.
- W3015203112 hasConcept C86803240 @default.
- W3015203112 hasConcept C97355855 @default.
- W3015203112 hasConceptScore W3015203112C119857082 @default.
- W3015203112 hasConceptScore W3015203112C121332964 @default.
- W3015203112 hasConceptScore W3015203112C127413603 @default.
- W3015203112 hasConceptScore W3015203112C147789679 @default.
- W3015203112 hasConceptScore W3015203112C150394285 @default.
- W3015203112 hasConceptScore W3015203112C159985019 @default.
- W3015203112 hasConceptScore W3015203112C176864760 @default.
- W3015203112 hasConceptScore W3015203112C185592680 @default.
- W3015203112 hasConceptScore W3015203112C186060115 @default.
- W3015203112 hasConceptScore W3015203112C187320778 @default.
- W3015203112 hasConceptScore W3015203112C192562407 @default.
- W3015203112 hasConceptScore W3015203112C24939127 @default.
- W3015203112 hasConceptScore W3015203112C2777665048 @default.
- W3015203112 hasConceptScore W3015203112C41008148 @default.
- W3015203112 hasConceptScore W3015203112C43617362 @default.
- W3015203112 hasConceptScore W3015203112C50644808 @default.
- W3015203112 hasConceptScore W3015203112C51038369 @default.
- W3015203112 hasConceptScore W3015203112C58445606 @default.
- W3015203112 hasConceptScore W3015203112C69357855 @default.
- W3015203112 hasConceptScore W3015203112C86803240 @default.
- W3015203112 hasConceptScore W3015203112C97355855 @default.
- W3015203112 hasIssue "1" @default.