Matches in SemOpenAlex for { <https://semopenalex.org/work/W3015302228> ?p ?o ?g. }
Showing items 1 to 50 of
50
with 100 items per page.
- W3015302228 endingPage "193" @default.
- W3015302228 startingPage "193" @default.
- W3015302228 abstract "Today, big and small organizations alike collect huge amounts of data, and they do so with one goal in mind: extract value through sophisticated exploratory analysis, and use it as the basis to make decisions as varied as personalized treatment and ad targeting. Unfortunately, existing data analytics tools are slow in answering queries, as they typically require to sift through huge amounts of data stored on disk, and are even less suitable for complex computations, such as machine learning algorithms. These limitations leave the potential of extracting value of big data unfulfilled. To address this challenge, we are developing Berkeley Data Analytics Stack (BDAS), an open source data analytics stack that provides interactive response times for complex computations on massive data. To achieve this goal, BDAS supports efficient, large-scale in-memory data processing, and allows users and applications to trade between query accuracy, time, and cost. In this talk, I'll present the architecture, challenges, results, and our experience with developing BDAS, with a focus on Apache Spark, an in-memory cluster computing engine that provides support for a variety of workloads, including batch, streaming, and iterative computations. In a relatively short time, Spark has become the most active big data project in the open source community, and is already being used by over one hundred of companies and research institutions." @default.
- W3015302228 created "2020-04-17" @default.
- W3015302228 creator A5034047294 @default.
- W3015302228 date "2014-06-16" @default.
- W3015302228 modified "2023-10-14" @default.
- W3015302228 title "Conquering big data with spark and BDAS" @default.
- W3015302228 doi "https://doi.org/10.1145/2637364.2611389" @default.
- W3015302228 hasPublicationYear "2014" @default.
- W3015302228 type Work @default.
- W3015302228 sameAs 3015302228 @default.
- W3015302228 citedByCount "2" @default.
- W3015302228 countsByYear W30153022282016 @default.
- W3015302228 countsByYear W30153022282018 @default.
- W3015302228 crossrefType "journal-article" @default.
- W3015302228 hasAuthorship W3015302228A5034047294 @default.
- W3015302228 hasConcept C124101348 @default.
- W3015302228 hasConcept C199360897 @default.
- W3015302228 hasConcept C2522767166 @default.
- W3015302228 hasConcept C2781215313 @default.
- W3015302228 hasConcept C41008148 @default.
- W3015302228 hasConcept C75684735 @default.
- W3015302228 hasConcept C79158427 @default.
- W3015302228 hasConceptScore W3015302228C124101348 @default.
- W3015302228 hasConceptScore W3015302228C199360897 @default.
- W3015302228 hasConceptScore W3015302228C2522767166 @default.
- W3015302228 hasConceptScore W3015302228C2781215313 @default.
- W3015302228 hasConceptScore W3015302228C41008148 @default.
- W3015302228 hasConceptScore W3015302228C75684735 @default.
- W3015302228 hasConceptScore W3015302228C79158427 @default.
- W3015302228 hasIssue "1" @default.
- W3015302228 hasLocation W30153022281 @default.
- W3015302228 hasOpenAccess W3015302228 @default.
- W3015302228 hasPrimaryLocation W30153022281 @default.
- W3015302228 hasRelatedWork W2545366524 @default.
- W3015302228 hasRelatedWork W2769430831 @default.
- W3015302228 hasRelatedWork W2803295405 @default.
- W3015302228 hasRelatedWork W3142038251 @default.
- W3015302228 hasRelatedWork W3177086633 @default.
- W3015302228 hasRelatedWork W3191926225 @default.
- W3015302228 hasRelatedWork W3211874991 @default.
- W3015302228 hasRelatedWork W4226411239 @default.
- W3015302228 hasRelatedWork W4297540011 @default.
- W3015302228 hasRelatedWork W2551093110 @default.
- W3015302228 hasVolume "42" @default.
- W3015302228 isParatext "false" @default.
- W3015302228 isRetracted "false" @default.
- W3015302228 magId "3015302228" @default.
- W3015302228 workType "article" @default.