Matches in SemOpenAlex for { <https://semopenalex.org/work/W3015310311> ?p ?o ?g. }
- W3015310311 endingPage "3098" @default.
- W3015310311 startingPage "3098" @default.
- W3015310311 abstract "In the field of macro-level safety studies, road traffic safety is significantly related to socioeconomic factors, such as population, number of vehicles, and Gross Domestic Product (GDP). Due to different levels of economic and urbanization, the influence of the predictive factors on traffic safety measurements can differ between cities (or regions). However, such region-level or city-level heterogeneities have not been adequately concerned in previous studies. The objective of this paper is to adopt a novel approach for traffic safety analysis with a dataset containing multiple target variables and samples from different subpopulations. Based on a dataset with annual traffic safety and socioeconomic measurements from 36 major cities in China, we estimate single-output regression models, multi-output regression models, and clustering-based regression models. The results indicate that the 36 cities can be clustered into a metropolitan city class and a non-metropolitan city class, and the class-specified models can notably improve the goodness-of-fit and the interpretability of city-level heterogeneities. Specifically, we note that the effect of primary and secondary industrial GDP on traffic safety is opposite to that of tertiary industrial GDP in the metropolitan city class, while the effects of the two decomposed GDP on traffic safety are consistent in the non-metropolitan city class. We also note that the population has a positive effect on the number of fatalities and the number of injures in metropolitan cities but has no significant influence on traffic safety in non-metropolitan cities." @default.
- W3015310311 created "2020-04-17" @default.
- W3015310311 creator A5028572318 @default.
- W3015310311 creator A5068862514 @default.
- W3015310311 date "2020-04-12" @default.
- W3015310311 modified "2023-10-01" @default.
- W3015310311 title "City-Level China Traffic Safety Analysis via Multi-Output and Clustering-Based Regression Models" @default.
- W3015310311 cites W1580948147 @default.
- W3015310311 cites W1608494420 @default.
- W3015310311 cites W1977556410 @default.
- W3015310311 cites W1978282613 @default.
- W3015310311 cites W1979787761 @default.
- W3015310311 cites W1982265713 @default.
- W3015310311 cites W1987423771 @default.
- W3015310311 cites W2003174243 @default.
- W3015310311 cites W2005756100 @default.
- W3015310311 cites W2017170637 @default.
- W3015310311 cites W2061637117 @default.
- W3015310311 cites W2064566729 @default.
- W3015310311 cites W2079650087 @default.
- W3015310311 cites W2081142366 @default.
- W3015310311 cites W2093294227 @default.
- W3015310311 cites W2101318197 @default.
- W3015310311 cites W2109639789 @default.
- W3015310311 cites W2112954013 @default.
- W3015310311 cites W2122347864 @default.
- W3015310311 cites W2123427200 @default.
- W3015310311 cites W2125357171 @default.
- W3015310311 cites W2135046866 @default.
- W3015310311 cites W2161082510 @default.
- W3015310311 cites W2314441067 @default.
- W3015310311 cites W2421355487 @default.
- W3015310311 cites W2595668666 @default.
- W3015310311 cites W2606202239 @default.
- W3015310311 cites W2795567446 @default.
- W3015310311 cites W2894608620 @default.
- W3015310311 cites W2946991410 @default.
- W3015310311 cites W2965375443 @default.
- W3015310311 cites W2991414727 @default.
- W3015310311 cites W2999281224 @default.
- W3015310311 cites W3007230624 @default.
- W3015310311 cites W3014330573 @default.
- W3015310311 cites W3124738853 @default.
- W3015310311 cites W4231029117 @default.
- W3015310311 cites W4234698323 @default.
- W3015310311 doi "https://doi.org/10.3390/su12083098" @default.
- W3015310311 hasPublicationYear "2020" @default.
- W3015310311 type Work @default.
- W3015310311 sameAs 3015310311 @default.
- W3015310311 citedByCount "2" @default.
- W3015310311 countsByYear W30153103112021 @default.
- W3015310311 countsByYear W30153103112023 @default.
- W3015310311 crossrefType "journal-article" @default.
- W3015310311 hasAuthorship W3015310311A5028572318 @default.
- W3015310311 hasAuthorship W3015310311A5068862514 @default.
- W3015310311 hasBestOaLocation W30153103111 @default.
- W3015310311 hasConcept C105795698 @default.
- W3015310311 hasConcept C114350782 @default.
- W3015310311 hasConcept C119857082 @default.
- W3015310311 hasConcept C127413603 @default.
- W3015310311 hasConcept C147077947 @default.
- W3015310311 hasConcept C149782125 @default.
- W3015310311 hasConcept C152877465 @default.
- W3015310311 hasConcept C158739034 @default.
- W3015310311 hasConcept C162324750 @default.
- W3015310311 hasConcept C166957645 @default.
- W3015310311 hasConcept C205649164 @default.
- W3015310311 hasConcept C22212356 @default.
- W3015310311 hasConcept C2781067378 @default.
- W3015310311 hasConcept C2908647359 @default.
- W3015310311 hasConcept C33923547 @default.
- W3015310311 hasConcept C39853841 @default.
- W3015310311 hasConcept C41008148 @default.
- W3015310311 hasConcept C50522688 @default.
- W3015310311 hasConcept C71924100 @default.
- W3015310311 hasConcept C99454951 @default.
- W3015310311 hasConceptScore W3015310311C105795698 @default.
- W3015310311 hasConceptScore W3015310311C114350782 @default.
- W3015310311 hasConceptScore W3015310311C119857082 @default.
- W3015310311 hasConceptScore W3015310311C127413603 @default.
- W3015310311 hasConceptScore W3015310311C147077947 @default.
- W3015310311 hasConceptScore W3015310311C149782125 @default.
- W3015310311 hasConceptScore W3015310311C152877465 @default.
- W3015310311 hasConceptScore W3015310311C158739034 @default.
- W3015310311 hasConceptScore W3015310311C162324750 @default.
- W3015310311 hasConceptScore W3015310311C166957645 @default.
- W3015310311 hasConceptScore W3015310311C205649164 @default.
- W3015310311 hasConceptScore W3015310311C22212356 @default.
- W3015310311 hasConceptScore W3015310311C2781067378 @default.
- W3015310311 hasConceptScore W3015310311C2908647359 @default.
- W3015310311 hasConceptScore W3015310311C33923547 @default.
- W3015310311 hasConceptScore W3015310311C39853841 @default.
- W3015310311 hasConceptScore W3015310311C41008148 @default.
- W3015310311 hasConceptScore W3015310311C50522688 @default.
- W3015310311 hasConceptScore W3015310311C71924100 @default.
- W3015310311 hasConceptScore W3015310311C99454951 @default.
- W3015310311 hasIssue "8" @default.
- W3015310311 hasLocation W30153103111 @default.